323 research outputs found

    Estimating Stellar Parameters from Spectra using a Hierarchical Bayesian Approach

    Get PDF
    A method is developed for fitting theoretically predicted astronomical spectra to an observed spectrum. Using a hierarchical Bayesian principle, the method takes both systematic and statistical measurement errors into account, which has not been done before in the astronomical literature. The goal is to estimate fundamental stellar parameters and their associated uncertainties. The non-availability of a convenient deterministic relation between stellar parameters and the observed spectrum, combined with the computational complexities this entails, necessitate the curtailment of the continuous Bayesian model to a reduced model based on a grid of synthetic spectra. A criterion for model selection based on the so-called predictive squared error loss function is proposed, together with a measure for the goodness-of-fit between observed and synthetic spectra. The proposed method is applied to the infrared 2.38--2.60 \mic ISO-SWS data (Infrared Space Observatory - Short Wavelength Spectrometer) of the star α\alpha Bootis, yielding estimates for the stellar parameters: effective temperature \Teff = 4230 ±\pm 83 K, gravity log⁥\log g = 1.50 ±\pm 0.15 dex, and metallicity [Fe/H] = −0.30±0.21-0.30 \pm 0.21 dex.Comment: 15 pages, 8 figures, 5 tables. Accepted for publication in MNRA

    Structure of the outer layers of cool standard stars

    Get PDF
    Context: Among late-type red giants, an interesting change occurs in the structure of the outer atmospheric layers as one moves to later spectral types in the Hertzsprung-Russell diagram: a chromosphere is always present, but the coronal emission diminishes and a cool massive wind steps in. Aims: Where most studies have focussed on short-wavelength observations, this article explores the influence of the chromosphere and the wind on long-wavelength photometric measurements. Methods: The observational spectral energy distributions are compared with the theoretical predictions of the MARCS atmosphere models for a sample of 9 K- and M-giants. The discrepancies found are explained using basic models for flux emission originating from a chromosphere or an ionized wind. Results: For 7 out of 9 sample stars, a clear flux excess is detected at (sub)millimeter and/or centimeter wavelengths. The precise start of the excess depends upon the star under consideration. The flux at wavelengths shorter than about 1 mm is most likely dominated by an optically thick chromosphere, where an optically thick ionized wind is the main flux contributor at longer wavelengths. Conclusions: Although the optical to mid-infrared spectrum of the studied K- and M-giants is well represented by a radiative equilibrium atmospheric model, the presence of a chromosphere and/or ionized stellar wind at higher altitudes dominates the spectrum in the (sub)millimeter and centimeter wavelength ranges. The presence of a flux excess also has implications on the role of these stars as fiducial spectrophotometric calibrators in the (sub)millimeter and centimeter wavelength range.Comment: 13 pages, 6 figures, 7 pages of online material, submitted to A&

    ALMA data suggest the presence of a spiral structure in the inner wind of CW Leo

    Full text link
    (abbreviated) We aim to study the inner wind of the well-known AGB star CW Leo. Different diagnostics probing different geometrical scales have pointed toward a non-homogeneous mass-loss process: dust clumps are observed at milli-arcsec scale, a bipolar structure is seen at arcsecond-scale and multi-concentric shells are detected beyond 1". We present the first ALMA Cycle 0 band 9 data around 650 GHz. The full-resolution data have a spatial resolution of 0".42x0".24, allowing us to study the morpho-kinematical structure within ~6". Results: We have detected 25 molecular lines. The emission of all but one line is spatially resolved. The dust and molecular lines are centered around the continuum peak position. The dust emission has an asymmetric distribution with a central peak flux density of ~2 Jy. The molecular emission lines trace different regions in the wind acceleration region and suggest that the wind velocity increases rapidly from about 5 R* almost reaching the terminal velocity at ~11 R*. The channel maps for the brighter lines show a complex structure; specifically for the 13CO J=6-5 line different arcs are detected within the first few arcseconds. The curved structure present in the PV map of the 13CO J=6-5 line can be explained by a spiral structure in the inner wind, probably induced by a binary companion. From modeling the ALMA data, we deduce that the potential orbital axis for the binary system lies at a position angle of ~10-20 deg to the North-East and that the spiral structure is seen almost edge-on. We infer an orbital period of 55 yr and a binary separation of 25 au (or ~8.2 R*). We tentatively estimate that the companion is an unevolved low-mass main-sequence star. The ALMA data hence provide us for the first time with the crucial kinematical link between the dust clumps seen at milli-arcsecond scale and the almost concentric arcs seen at arcsecond scale.Comment: 22 pages, 18 Figures, Astronomy & Astrophysic

    Artifacts at 4.5 and 8.0 um in Short Wavelength Spectra from the Infrared Space Observatory

    Full text link
    Spectra from the Short Wavelength Spectrometer (SWS) on ISO exhibit artifacts at 4.5 and 8 um. These artifacts appear in spectra from a recent data release, OLP 10.0, as spurious broad emission features in the spectra of stars earlier than ~F0, such as alpha CMa. Comparison of absolutely calibrated spectra of standard stars to corresponding spectra from the SWS reveals that these artifacts result from an underestimation of the strength of the CO and SiO molecular bands in the spectra of sources used as calibrators by the SWS. Although OLP 10.0 was intended to be the final data release, these findings have led to an additional release addressing this issue, OLP 10.1, which corrects the artifacts.Comment: 14 pages, AASTex, including 5 figures. Accepted by ApJ Letter

    Age dependence of the Vega Phenomenon: Theory

    Get PDF
    In a separate paper (Decin et al 2003), we have re-examined the observations of IR excess obtained with the ISO satellite and discussed the ages of stars with excess. The amount of dust (measured by the luminosity fraction \fdust=L_\mathrm{IR}/L_{\star}) seen around main-sequence stars of different ages shows several interesting trends. To discuss these results in the context of a physical model, we develop in this paper an analytical model for the dust production in Vega-type systems. Previously it has been claimed that a powerlaw slope of about -2 in the diagram plotting amount of dust versus time could be explained by a simple collisional cascade. We show that such a cascade in fact results in a powerlaw \fdust\propto t^{-1} if the dust removal processes are dominated by collisions. A powerlaw \fdust\propto t^{-2} only results when the dust removal processes become dominated by Pointing-Robertson drag. This may be the case in the Kuiper Belt of our own solar system, but it is certainly not the case in any of the observed disks. A steeper slope can, however, be created by including continuous stirring into the models. We show that the existence of both young and old Vega-like systems with large amounts of dust (\fdust\simeq 10^{-3}) can be explained qualitatively by Kuiper-Belt-like structures with \emph{delayed stirring}. Finally, the absence of young stars with intermediate amounts of dust may be due to the fact that stirring due to planet formation may not be active in young low-mass disks. The considerations in this paper support the picture of simultaneous stirring and dust production proposed by Kenyon and Bromley (2002).Comment: 26 pages, 3 figures, accepted for Publication in Ap

    First scattered light images of debris disks around HD 53143 and HD 139664

    Full text link
    We present the first scattered light images of debris disks around a K star (HD 53143) and an F star (HD 139664) using the coronagraphic mode of the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST). With ages 0.3 - 1 Gyr, these are among the oldest optically detected debris disks. HD 53143, viewed ~45 degrees from edge-on, does not show radial variation in disk structure and has width >55 AU. HD 139664 is seen close to edge-on and has belt-like morphology with a dust peak 83 AU from the star and a distinct outer boundary at 109 AU. We discuss evidence for significant diversity in the radial architecture of debris disks that appears unconnected to stellar spectral type or age. HD 139664 and possibly the solar system belong in a category of narrow belts 20-30 AU wide. HD 53143 represents a class of wide disk architecture with characteristic width >50 AU.Comment: 7 pages, 3 figure

    Ice and Dust in the Quiescent Medium of Isolated Dense Cores

    Get PDF
    The relation between ices in the envelopes and disks surrounding YSOs and those in the quiescent interstellar medium is investigated. For a sample of 31 stars behind isolated dense cores, ground-based and Spitzer spectra and photometry in the 1-25 um wavelength range are combined. The baseline for the broad and overlapping ice features is modeled, using calculated spectra of giants, H2O ice and silicates. The adopted extinction curve is derived empirically. Its high resolution allows for the separation of continuum and feature extinction. The extinction between 13-25 um is ~50% relative to that at 2.2 um. The strengths of the 6.0 and 6.85 um absorption bands are in line with those of YSOs. Thus, their carriers, which, besides H2O and CH3OH, may include NH4+, HCOOH, H2CO and NH3, are readily formed in the dense core phase, before stars form. The 3.53 um C-H stretching mode of solid CH3OH was discovered. The CH3OH/H2O abundance ratios of 5-12% are larger than upper limits in the Taurus molecular cloud. The initial ice composition, before star formation occurs, therefore depends on the environment. Signs of thermal and energetic processing that were found toward some YSOs are absent in the ices toward background stars. Finally, the peak optical depth of the 9.7 um band of silicates relative to the continuum extinction at 2.2 um is significantly shallower than in the diffuse interstellar medium. This extends the results of Chiar et al. (2007) to a larger sample and higher extinctions.Comment: Accepted for publication in The Astrophysical Journa

    Herschel/HIFI observations of O-rich AGB stars : molecular inventory

    Get PDF
    Spectra, taken with the heterodyne instrument, HIFI, aboard the Herschel Space Observatory, of O-rich asymptotic giant branch (AGB) stars which form part of the guaranteed time key program HIFISTARS are presented. The aim of this program is to study the dynamical structure, mass-loss driving mechanism, and chemistry of the outflows from AGB stars as a function of chemical composition and initial mass. We used the HIFI instrument to observe nine AGB stars, mainly in the H2O and high rotational CO lines We investigate the correlation between line luminosity, line ratio and mass-loss rate, line width and excitation energy. A total of nine different molecules, along with some of their isotopologues have been identified, covering a wide range of excitation temperature. Maser emission is detected in both the ortho- and para-H2O molecules. The line luminosities of ground state lines of ortho- and para-H2O, the high-J CO and NH3 lines show a clear correlation with mass-loss rate. The line ratios of H2O and NH3 relative to CO J=6-5 correlate with the mass-loss rate while ratios of higher CO lines to the 6-5 is independent of it. In most cases, the expansion velocity derived from the observed line width of highly excited transitions formed relatively close to the stellar photosphere is lower than that of lower excitation transitions, formed farther out, pointing to an accelerated outflow. In some objects, the vibrationally excited H2O and SiO which probe the acceleration zone suggests the wind reaches its terminal velocity already in the innermost part of the envelope, i.e., the acceleration is rapid. Interestingly, for R Dor we find indications of a deceleration of the outflow in the region where the material has already escaped from the star.Comment: 6 Figures in the main paper + 12 further figures in the appendix (to be printed in electronic form) Accepted for publication by A&
    • 

    corecore