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A B S T R A C T
A method is developed for fitting theoretically predicted astronomical spectra to an 
observed spectrum. Using a hierarchical Bayesian principle, the method takes both sys
tematic and statistical measurement errors into account, which has not been done be
fore in the astronomical literature. The goal is to estimate fundamental stellar parame
ters and their associated uncertainties. The non-availability of a convenient determinis
tic relation between stellar parameters and the observed spectrum, combined with the 
computational complexities this entails, necessitate the curtailment of the continuous 
Bayesian model to a reduced model based on a grid of synthetic spectra. A criterion 
for model selection based on the so-called predictive squared error loss function is pro
posed, together with a measure for the goodness-of-fit between observed and synthetic 
spectra. The proposed method is applied to the infrared 2 . 3 8 - 2 . 6 0 ISO-SWS data 
(Infrared Space Observatory - Short Wavelength Spectrometer) of the star a  Bootis, 
yielding estimates for the stellar parameters: effective temperature Teff = 4230 ±  83 K, 
gravity log g=1.50 ±0.15dex, and metallicity [Fe/H] = -0.30 ±  0.21dex.

Key words: Methods: data analysis -  Methods: statistical -  Techniques: spectro
scopic -  Stars: fundamental parameters -  Stars: individual: Alpha Boo

1 IN T R O D U C T IO N

There are two general approaches to  the observational study 
of stellar atmospheres: analysis and synthesis. Analysis en
tails measuring detailed features of the spectrum  under in
vestigation and hence deducing the param eters of the stel
lar atmosphere. Synthesis implies specifying atmospheric 
param eters and calculating the resulting spectrum: when 
the synthetic and observed spectra agree sufficiently closely 
and /o r in an optim al way, the param eters associated with 
the synthetic spectrum  are taken as estim ates for the star 
under consideration. Current applications of the synthesis 
technique in the astronomical literature are, however, ham 
pered by the lack of a suitable objective m ethod for decid
ing which one out of a pool of candidate synthetic spectra 
matches the observed one best. Often, the observed spec
trum  is simply presented along w ith a “best” synthetic spec
trum  w ithout any mention of the fit criteria employed. Of
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France, Germany, the Netherlands and the United Kingdom) and 
with the participation of ISAS and NASA. 
f E-mail: ziv.shkedy@uhasselt.be
|  Postdoctoral Fellow of the Fund for Scientific Research, Flan
ders; e-mail: Leen.Decin@ster.kuleuven.be

tentimes, visual comparison is used, which may be adequate 
if the spectral region used is relatively short and contains 
only a few spectral lines. Such an eye-fitting m ethod is in 
danger of failing when the observational d a ta  cover a large 
wavelength range, in which many atomic and /o r molecular 
transitions occur. Moreover, when one wants to  account for 
measurem ent errors, the task  of deciding upon the “best” 
synthetic spectrum  is even more complicated.

Inferences for param eters of a stellar atm osphere using 
the synthesis approach consist of comparing the observed 
spectrum  of the sta r w ith a collection of synthetic spectra. 
Let fi =  (Teff, log g, [Fe/H]) be the most im portant pa
ram eters of the stellar atmosphere: tem perature in Kelvin, 
gravity expressed on the log scale, and metallicity. Let M  
refer to  the num ber of synthetic spectra in the grid. A syn
thetic spectrum , (m =  1 , . . . , M ) is identified by its 
value for fi, f i(m) say.

Previously employed frequentist param eter estim ation 
and model selection for the spectrum  are based on a 
goodness-of-fit statistic, T (y ,d (m')), measuring the discrep
ancy between observed and synthetic spectra. Kolmogorov- 
Smirnov test statistics and residual sum of squares are dis
cussed in Decin et al. (2000, 2004). B oth m ethods use the 
value of f i(m) minimising T (y ,# (m)) as an estim ate for fi. 
However, two ex tra complexities render a paradigm  shift

http://arXiv.org/abs/astro-ph/0701449v1
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Table 1. Symbols used in the proposed Bayesian method.

symbol

a Mfa 2
n

P  (y\ß)
P (p\Q, a M)
P  (ß \y ,e ,a2, 
T  m (y,ß)

meaning

observed spectrum 
synthetic spectrum 
“true” spectrum 
SPARE-tag 
STDEV-tag
triplet of stellar parameters

likelihood function 
spectrum’s prior distribution 
spectrum’s posterior distribution 
goodness-of-fit score for model selection

P  (y|n). W hile w ithin the frequentist framework a param 
eter n  is assumed to  be an unknown constant, inference 
then being based on the sampling distribution of the data  
given the param eter, i.e., the likelihood function P (y |n ) , the 
Bayesian approach entertains the idea th a t n  is a random  
variable w ith a so-called prior distribution, P (n )  and with 
inference proceeding based on the conditional d istribution of 
the param eter given the d a ta  P (n |y ) , the so-called posterior 
distribution. The la tte r follows from the prior distribution 
and likelihood function combined, using Bayes’ theorem  (Eq. 
(1)) and the concept of marginalisation (Eq. (2)):

P {y\n) x P(7r)
P  (n|y) =

and
P (y)

(l)

a sensible approach, away from frequentist and towards 
Bayesian methods. Of course, this assertion does not im
ply the Bayesian paradigm  should be deemed in any way 
superior over the likelihood and /o r frequentist paradigms. 
F irst, the analysis presented in Sect. 7 reaches a very high 
level of agreement between observed and theoretical data  
sets. A proper inclusion of both system atic and statistical 
measurem ent errors in the model selection and param eter 
determ ination procedure is then in its place. Second, the 
com putation of the theoretical d a ta  takes many CPU-hours, 
rendering the calculation of a huge grid of theoretical spectra 
unfeasible.

Here, we present an objective tool, based on hierarchical 
Bayesian ideas, for measuring the goodness-of-fit between 
observational and synthetic spectra, a t the same tim e incor
porating the statistical and system atic measurem ent errors. 
Precisely, the reason for choosing the Bayesian paradigm  is 
the ability to  combine the observed spectra w ith prior knowl
edge. Such prior knowledge, term ed expert priors , originates 
from the theory of and empirical knowledge gathered about 
stellar atmospheres. The proposed m ethod is suitable for es
tim ating stellar param eters, other than  the ones presented 
here. For readers not used to  Bayesian statistics, the main 
principles are outlined in Sect. 2, supplemented w ith key 
references.

Sect. 3 introduces the d a ta  setting. A hierarchical 
Bayesian model is presented in Sect. 4, while the tasks of 
calculating the prior d istribution and model selection issues 
are discussed in Sects 5 and 6, respectively. As in Decin et al. 
(2004), we apply our m ethod to  the case study of the 2.38
2.60 ^m  ISO-SWS spectrum  of the K2IIIp sta r A lpha Bootis 
(Arcturus, HD 124897). Sect. 7 is devoted to  the applica
tion. In Sect. 8, we compare the results as obtained from 
the Bayesian methodology w ith other studies.

2 B A Y E S IA N  IN F E R E N C E

2.1 B a y e s ’ th e o re m  a n d  m a rg in a lis a tio n

To support understanding in this and subsequent sections, 
Table 1 presents the main symbols used.

Similar to  the frequentist inferential approach, the 
Bayesian paradigm  is based on observations, y, taken with 
uncertainty and assumed to  be sampled from a population 
d istributed  according to  a probability d istribution function,

P(y) P (y |n )P (n )  dn  . (2)

The prior probability represents our sta te  of knowledge 
about the d istribution of the param eter before we analyse 
the data. This knowledge is modified by the experim ental 
measurem ents through the likelihood function, producing 
the posterior distribution. W hen om itting P (y ) from Eq. (1), 
one writes P (n |y )  <x P (y |n )  x P (n ) . This is fine for many 
statistical inferences, such as param eter and precision es
tim ation. However, when model selection is envisaged, the 
term  P (y ), often term ed evidence, is vitally im portant.

2 .2  S o m e e x a m p le s

2.2.1 Example 1

Consider a single observation, y, from a normal distribution 
w ith mean 6 and known variance a 2. The likelihood in this

) .
n m  = v h exp ( ¿ (y -  0)2) " exp ( ¿ (y “  0)2
Assuming further th a t 6 is normally distributed w ith mean 
^  and variance t 2, the prior model is

P ( % , r )  cx exp ^ ^ 2  (0 -  M)2 

Gelman et al. (1995) derived the posterior d istribution to  be

(3)P (e\y) oc exp

which is a norm al d istribution w ith mean n and variance 
Æ2. We re tu rn  to  the param etric structure of n and 52 in 
Sect. 5.2.1.

2.2.2 Example 2

Consider a sequence of n  Bernoulli, i.e., 0/1, trials y i , . . .  , yn , 
with probability of observing 1 equal to  6, and let y =  
£?= iyi. The resulting binomial likelihood is given by

P(y |6) <x 6y(1 -  6)(n -y ),
and the (frequentist) maximum likelihood for the success 
probability 6 is 6m l  =  y /n . Suppose we specify the prior 
distribution for the success probability to  be Beta: 6 ~  
B eta(a,/9), then
P(O) «  O“ - 1 ( l  -  O)ß-1

M

O

O
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Then, the prior m ean for 6 is a / ( a  +  ß). The posterior dis
tribution of 6 then  is:

P (6 |y ) <x 6(y+a -1 ) (1 -  6 )(n-y+ß -1 ),
which is, again, a beta  distribution, 6|y ~  B e ta (a  +  y ,ß  +  
n  — y ), w ith posterior mean

E{0\y) = ° ' \ V .
a  + ß  + n

To illustrate this model further, assume 6 successes were 
obtained out of 10 trials and suppose th a t we specify a 
non-informative prior 6 ~  U (0,1) (hence, a  =  ß  =  1 
since B e ta (1 ,1) is a uniform distribution over the interval 
[0,1]). In this case, the maximum likelihood estim ate for 6 
is b =  0.6 when using the classical frequentist methodology, 
while the Bayesian analysis results in a posterior mean of 
b =  7/12 =  0.583. In  other words, since the posterior mean 
is obtained by pulling the maximum likelihood value 0.6 to 
wards the prior m ean of the U (0,1), which equals 5. The 
larger the sample size, the less the im portance of the prior 
distribution.

2.2.3 Hierarchical models

The above examples can be formulated as hierarchical mod
els in which the likelihood and the prior are specified at the 
first and the second level of the model. A t the th ird  level of 
the model we specify the probability model for the hyperpa
rameters t 2 and a 2, FT and Fa , which are called hyperprior 
distributions. Hence, we obtain e.g. for example 1:

N  (<9,ct2),
d ~  N (f ,  T2),
T2 ~  Ft and a 2 ~  F ct,

1st level, 
2nd level, 
3rd level.

p  ( H m2j-1))
, f  3

, f r ih
(j) TDf,, |, ,(j) ,,(j —1) ,,(j — 1)n\-  P  (M2|Mi , M3 . . . , Md ),

f i j) ~  p  (m¿Im1j) , u (j) U(j-1), f i - i , f i+ i ■ ,fd j-1) ),

(j) ~ p ( f d | f j ) , . . . , Mdj-1) .

— Repeat the second step until convergence.

Assuming th a t the sampling process is converged after L 
iterations, the posterior mean of p, can be estim ated by 
MCMC integration:

L f (i) E t
Note th a t fn  is simply the sample mean of which is ob
tained after L iterations of the Gibbs sampling. In our set
ting fti is the posterior mean of the spectrum  at wavelength 
i.

One of the quantities of interest will be T (m)( y , f l ) 
(see Sect. 6.1). In practice, if we draw L simulations from 
the posterior distribution of f  we can m onitor the value of 
T (m)( y , f l ) for each iteration, I  =  1, 2 ,..  . , L and the poste
rior mean of T (m)( y , f l ) is simply 1 /L  P L=i T£(m)(y ,f ) .

It is im portant to  realise th a t the Bayesian m ethod is 
typically based on fully specifying the likelihood function, 
together w ith a prior distribution. These, combined w ith the 
data, produce the posterior distribution and ultim ately s ta 
tistical inferences. W hen analytic com putations are deemed 
too cumbersome, one may then  elect MCMC com putations 
instead. Such a switch does not change the param etric na
ture of the assumptions made and hence the MCMC im
plem entation is fully param etric. Furtherm ore, in many in
stances, like the one considered here, opting for normal dis
tributions greatly simplifies com putations.

2.3 P o s te r io r  in fe ren c e

As was explained in Sect. 2.1, inference is based on the pos
terior d istribution of the unknown param eters in the model 
given the d a ta  P (n |y ). This d istribution can be derived an
alytically (as in the above example) or may have to  be ap
proxim ated using the so-called Markov Chain M onte Carlo 
(MCMC) algorithm. A single iteration of the MCMC algo
rithm  (Gilks et al. 1996) consists of sampling the unknown 
param eters in the model from their full conditional distri
bution, given the current value of the other param eters in 
the model and the data. Assume th a t the distribution of in
terest is P ( f ) ,  where f  =  ( f i , . . .  , f d). We denote the full 
conditional d istribution of f  i given all other param eters by 
P  ( f i | f - i ) .

One way to  implement the MCMC algorithm is through 
the well-known Gibbs sampling algorithm (Gilks et al. 
1996), the steps of which are as follows:

— Step 1:
Initialize the iteration counter of the chain ( j =  
1) and the initial values for the param eters f (0) =

( f i0) , . . . , f d 0)).
— Step 2:

Draw a new value f j =  ( f  ij ) , . . .  , f  j ’)) through successive 
sampling from the full conditional distributions:

3 O B S E R V E D  A N D  S Y N T H E T IC  S P E C T R A

Let us discuss the observational d a ta  setting and the concept 
of synthetic spectra in turn.

3.1 O b se rv a t io n a l d a t a  y

The observational d a ta  for a  Boo, also considered in 
Decin et al. (2004) consist of near-infrared (2.38-2.60 fm , 
band 1A) spectra, observed w ith the SWS (Short Wave
length Spectrom eter, de Graauw et al. 1996) on board ISO 
(Infrared Space Observatory, Kessler et al. 1996). Prior to 
the statistical analysis, d a ta  reduction techniques are ap
plied (Decin et al. 2004). Bands are combinations of detec
tor array, aperture and grating orders such th a t for each 
band its detector array sees a unique order of light, and 
hence a unique wavelength A. Band 1 (2.38-4.08 fm ) is sub
divided in 4 sub-bands: band 1A: 2.38-2.60 fm , band 1B: 
2.60-3.02 fm , band 1D: 3.02-3.52 fm , and band 1E: 3.52
4.08 fm . The same resolution and factor shift for band 1A 
are used as in Table 1 of Decin et al. (2004). Let us tu rn  to 
the uncertainties and errors in the data.

The error propagation of the SWS pipeline separates 
statistical errors from system atic ones. The so-called s ta 
tistical ‘STD EV -tag’ a  contains the standard  deviation of
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the points in a given bin, and the system atic ‘SPA RE-tag’ 
a M captures the effect of the imperfect performance of the 
instrum ent. The ‘SPA RE-tag’ of the ISO-SWS d a ta  corre
sponds to  statistical accuracy, i.e., how well system atic er
rors can be controlled, closeness between the result of an 
experiment and the true value, while the ‘STD EV -tag’ cor
responds to  the precision, i.e., how well the random  errors 
can be controlled. The errors a  and a M have the same order 
of m agnitude (Fig. 1).

While the ‘SPARE-tags’ are almost the same for all ob
servations of all target stars observed by the satellite, the 
‘STD EV -tag’ discriminates between the quality of the data  
points. Assume a normally d istributed model for the ob
served spectrum  yi at wavelength i, i =  1 ,2 , . . . , n  with 
m ean E (y^  =  ^ ,  representing the true  spectrum  of the 
target, possibly including system atic instrum ental artifacts, 
and statistical measurem ent error variance a i, then a normal 
model

yi =  Mi +  £i, (4)
where ei ~  N (0 ,a 2) is assumed.

P  ( y |f , a 2) =  Y  0 ( y i |f i ,a |)  , (5)
i=1

where 0 is the density of the norm al d istribution w ith pa
ram eters f  and a 2. Assume th a t the mean of the observa
tional d a ta  at wavelength i, f i , follows a norm al distribution,
i.e.,

f i  =  6i +  ui, (6)
w ith u i ~  N (0, aMi ) and a Mi the system atic observational 
error. Following (6), we assume th a t, owing to  the system 
atic errors, the true spectrum  is distributed  around 6i with 
variance a Mi. It follows from (6) th a t the prior distribution 
is given by

n
P ( f  |6, aM ) =  Y  0 ( f  |6i, aM ,). (7)

i=i
Then, the spectrum ’s posterior d istribution is 

P ( f |y , a 2,aM ,6) <x P ( y | f , a 2) • P ( f |6 ,a M )
n n

=  Y 0 ( y i | f i , a 2) • Y 0 ( f |6 i , a M ,). (8) 
i=1 i=1

3 .2  S y n th e tic  d a ta  Q

A synthetic stellar spectrum  is com puted from first-principle 
physics laws governing the stellar atmosphere. For a full 
description of this s tudy ’s synthetic spectra we refer to 
Decin et al. (2000, 2004). It is very im portant to  note th a t 
the functions of interest are of a continuous nature, yet they 
will be treated  in a discretized way, for reasons of numerical 
feasibility. Indeed, the synthetic spectra calculations require 
a model atm osphere as input, which is obtained through 
lengthy calculations, taking several hours, in order to  ob
ta in  hydrostatic equilibrium and to  fulfill the conservation 
law of radiative (and convective) energy. W hen this would 
not have been the case, i.e., when we could have w ritten 
f(A ) =  h (T eff, logg, [Fe/H], A), w ith h representing a closed 
analytical function, then  we could have estim ated T eff, log 
g and [Fe/H] directly from the observational spectrum . We 
circumvent the absence of a closed form for the spectrum  
by considering a dense grid of synthetic spectra 6, w ith the 
goal of providing appropriate error estimates.

Subsequently, we rely on hierarchical Bayesian m od
els for spectrum  fitting, following the idea proposed by 
Laud & Ibrahim  (1995) and Gelfand & Ghosh (1998), who 
suggested comparing the observed d a ta  (y) and hypotheti
cal data, term ed replicated data, sampled from the posterior 
predictive distribution, by minimising a predictive discrep
ancy measure (Sect. 6 ).

4 H IE R A R C H IC A L  B A Y E S IA N  M O D E L  F O R  
T H E  S P E C T R U M

Applying Bayes’ theorem  produces the spectrum ’s poste
rior distribution, as outlined in Sect. 2. Precisely, from our 
knowledge of 6 and y, we predict f ,  i.e., we derive its pos
terior. For a “bad” synthetic spectrum  6, the observational 
d a ta  y and the predicted f  will differ by a relatively large 
amount.

Using (4), the likelihood of the model param eters given 
the d a ta  equals

5 P O S T E R I O R  D IS T R IB U T IO N  F O R  T H E  
S P E C T R U M

5.1 T h e  fu ll m o d e l

The above specifications are sufficient to  define the posterior 
distribution of all model param eters jointly:

P  ( f , 6 , a 2,a M , fi|y)
(1),(2)

OC P{y\jj,,a2)̂  x P(fj,\0 (Tm )̂

likelihood, Eq. (5) prior, Eq. (7)
X P (0 |fi) x p  (O) (9)

distribution of the prior mean 9 hyperprior
We still need to  specify the hyperpriors for P (T eff), P(log g), 
and P([Fe/H ]). A literature study for the stellar atmosphere 
param eters of a  Boo was presented in Decin et al. (2000), 
who found th a t T eff ranges from 4060 K to 4628 K, log g 
from 0.90 to  2.60 dex, and [Fe/H] from -0 .7 7  to  0.00 dex, 
based on which we construct the hyperprior distributions. 
Further discussion on the choice of the grid param eters and 
the uncertainties thereon is relegated to  Sect. 7.

After establishing P (f i) , P (6 |fi) is needed to  complete 
the specification of the hierarchical model. Since there is 
no determ inistic relationship between 6 and fi, we cannot 
specify the mean of the prior d istribution using standard  
m ethods, including linear, generalised linear, or non-linear 
models, for example. This implies the need to  adopt a two- 
stage approach w ith calculation of a collection of models for 
the synthetic spectrum  over a grid of discrete values in fi, 
f i(1), . . .  , f i(M), followed by usage of these models 6 (m) (m =
1 ,.. . , M ), as the prior m ean of f  in (7). In this approach, the 
value of fi, given the data, is not estim ated w ith the posterior 
means of the hyperprior distributions, bu t rather we select 
models from the collection calculated in the first stage. Thus, 
our two-stage approach implies a model selection procedure 
ought to  be used to  select the ‘b est’ synthetic spectrum. 
This issue is discussed further in Sect. 6.



E stim ating Stellar Param eters from  Spectra using a Hierarchical Bayesian Approach  5

5.2 T h e  re d u c e d  m o d e l

For the m th  com bination of fi, we calculate 0(m) and con
sider a reduced posterior distribution 

P ( ^ ,0 (m), a 2,aM |y) x  P ( y |^ ,a 2,0 (m)) • P M 0 (m),aM )

x  P ( ^ |y ,a 2,CTM ,0 (m)), (10)
where P ( ^ |y ,a 2, a ^ , 0 (m)) is the posterior distribution of 
the spectrum  ^  given f i(m), and 0(m) is the prior mean of ^  
as in (7). Since, for the m th  combination P (0 (m)|f i(m) ,m ) =  
P  (fi(m) |m) =  1, passing from (9) to  (10) is straightforward.

5.2.1 Specification of the reduced model

We focus on the posterior d istribution of the spectrum  ^  at 
wavelength i given y*, 0(m), a*, and a Mi. For the remainder 
of this section we drop superscript m  and subscript i. Since 
the prior in (7) is conjugate to  the normal likelihood in (5), 
the posterior distribution of the spectrum  is normal as well. 
Formally, the likelihood and the prior can be expressed by

P (y |/i ,tr2) cxexp ^ - ^ ( y - / i ) 2 )̂ , (11)

and

(a): log(STDEV-tagA2) in band 1A (b): log(SPARE-tagA2) in band 1A

P ( ^ |0 ,a M) x  exp I —
2aif

(12)

respectively. It follows from (11) and (12) th a t the posterior 
distribution of ^  is

P(^|y,£,CT2,CTM) x  exp - ¿ ( M - 01)2 (13)

which is a norm al d istribution w ith mean 01 and variance 
¿2 given by

01 =
- i -  4- -i-

(14)

This model is discussed in detail by Gelman et al. (1995). 
The result in (14) means th a t the posterior mean of the 
spectrum  01 in (13) is a weighted average of the synthetic 
spectrum  and the observed spectrum . It can be shown th a t

01 =  0 +  (y — 0)
2a M (15)

a2 +  a  M
where the second factor on the right hand side is a shrinkage 
factor. Hence, if the SPARE-tag a Mi, containing the sys
tem atic measurem ent error, is relatively large compared to 
the STDEV-tag, a*, containing the statistical measurem ent 
error, the posterior mean of the spectrum  at wavelength i 
shrinks towards the observed spectrum  at wavelength i. In 
the reverse case, the posterior mean of the spectrum  shrinks 
towards the synthetic spectrum.

5.2.2 Contracting the variance function

Clearly, the variance param eters a 2 and . are unknown 
and need to  be estimated. Fig. 1 displays the measurem ent 
errors in band 1A (on the log scale). The shrinkage ratio, 
a M / ( a 2 +  Om), is shown in panel c. Note th a t for wave
lengths smaller than  or equal to  2.4 ^m  the mean of the 
shrinkage ratio is 0.5 while for wavelengths greater than  or 
equal to  2.58 ^m  the mean of the shrinkage ratio increases 
to  0.87. This means th a t at the beginning of band 1A the

9.
0

8.
5

■ . . - . . - i  > . ^ .

0.8

2.45 2.50 2.55 

wavelength[m icron]

2.40 2.45 2.50 2.55 

wavelength[m icron]

(c): shrinkage factor in band 1A

2.40 2.45 2.50 2.55 

wavelength[m icron]

F igu re  1. Measurement errors in band 1A. Panel a: statisti
cal \og(STDEV-tag)2 (log(a2)). Panel b: systematic log(SPARE- 
tag)2 (log(o'2f)). Panel c: the shrinkage ratio a2 /(a 2 +  a ^ ).

posterior mean is an average between the observed and syn
thetic spectrum , while the weight of the observed spectrum  
increases w ith the wavelength.

To model the variance components, we consider an 
empirical Bayesian approach (Carlin & Louis 1996). Using 
the estim ates for the measurem ent error, we first spec
ify a model for a 2 and a ^ . , estim ate the param eters, 
and then plug in predicted values into the model. Specifi
cally, we sm ooth the d a ta  using a hierarchical linear mixed 
model (Verbeke & Molenberghs 2000), allowing to  estim ate 
a sm ooth function for the variance components in a flexible 
fashion. For a , we assume

log(a2) -  N(XiU +  Z iu ,<£), (16)
where X  and Z* are known design matrices, u are regres
sion coefficients, and u =  (u1, . . . , u k ) are random  effects 
assumed to  follow u k — N (0, ¿U) (k =  1 , . . .  , K ). A similar 
model was assumed for a . Details can be found in Shkedy
(2003). In this approach, we use the estim ated sm ooth func
tions as variance components of the reduced model. Such a 
sm ooth function allows the d a ta  to  dom inate the posterior 
mean at the end of band 1A, where a is relatively small 
relative to  a M. The application to  a  Boo is presented in 
Sect. 7.

)
1
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6 M O D E L  S E L E C T IO N

6.1 M e a s u re s  fo r th e  g o o d n ess-o f-fit

Using (10), we predict ^  from our knowledge on y and 0(m). 
Following Gelman et al. (1995) and Carlin & Louis (1996), 
a weighted x 2 goodness-of-fit measure, given by

T<mW )  = Î 2 — ~ E{Vi\ ^ eim)]2 (17)
i=1 var(yi|^ i ,0 (m))

can be used. T (m)(y ,^ ) measures the discrepancy be
tween the observed d a ta  y and the expected mean, rela
tive to  the variability in the model. Both a and a in
fluence T (m)(y ,^ ), since a 2 =  var(y |^), and because ^  — 
N (0 (m), a ^ ), the denom inator depends on bo th  quantities.

In our application, we will compare the performance 
of t (m)(y ,^ ) w ith the results in Decin et al. (2000), who 
used a frequentist version of (17) th a t is unable to  take the 
observational errors into account. Note, however, th a t within 
the Bayesian framework T (m) (y, ^) is not used as a criterion 
for model selection bu t rather as a measure for the model 
goodness-of-fit.

6 .2  P o s te r io r  p re d ic tiv e  d is t r ib u t io n

C riteria for Bayesian model selection are discussed in 
Laud & Ibrahim  (1995) and Gelfand & Ghosh (1998), all 
based on the posterior predictive distribution.

Let y* be the observed d a ta  at wavelength i and 
the current value of ^  at the 1th MCMC iteration. Then, 
we simulate n  hypothetical replications from the d a ta  given 
the current value of and denote these values by y rep 
(i =  1, 2 , . . . , n ) .  From  these n  replicates P  (yrep|^ ,0 ,y )  is 
constructed. Formally, the posterior predictive distribution 
is given by

P (y rep|y) = P (y rep, #) d^. d#

p  (yreplM ,#,y)P (m, % )  d^d#. (18)

For each replicated sample, obtained from (18), the observed 
d a ta  and the posterior predictive d istribution are compared. 
If the m th  synthetic spectrum  is sufficiently accurate, the hy
pothetical replication and the observed d a ta  are considered 
sufficiently similar.

6.2.1 Predictive model selection under squared error loss

A good model for the synthetic spectrum , among the m od
els under consideration, should render a prediction close to  
what has been observed. Thus, a synthetic spectrum  model 
leading to  a small discrepancy between the replication and 
the observed d a ta  is considered a viable description of the 
data. A measure for the discrepancy, based on squared error 
loss is proposed by Laud & Ibrahim  (1995):

n
Lm =  E [(yrep — y)T (yrep — y)] =  E  — y*)2, (19)

i=1
where a superscript T  refers to  transpose. Laud & Ibrahim
(1995) and Gelfand & Ghosh (1998) showed th a t Lmm can be 
expressed as a sum of two terms:

n
Lm =  X [ E ( y r eP — y*)2 +  var(y[ep)] =  G(m ) +  P  (m). (20)

Here, G(m ) measures the goodness-of-fit and P (m ) is a 
penalty measuring model complexity. The la tte r is the same 
for all synthetic spectra as they are calculated w ith the same 
num ber of param eters. Lm can now be used for model selec
tion. Laud & Ibrahim  (1995) and Gelfand & Ghosh (1998) 
suggested selecting a model from a collection of M  can
didates by minimising the expected squared error loss of 
the replicated data. Hence, the procedure proposed by 
Gelfand & Ghosh (1998) requires calculation of Lm over the 
model collection:

L2 2(m) (21)
.=1 .=1 

where o 2(m) =  var(y.rep|y, m) and n(m) =  E(y.rep|y ,m ). In 
our setting, n.(m) =  E(y.rep|y, #(m)). If we assume th a t both  

and o Mi are known, then the model minimising G(m ) is 
selected, otherwise the model th a t minimises is selected.

A schematic representation of the various model build
ing and selection steps is presented in Figure 2.

7 A P P L IC A T IO N : T H E  C A S E  S T U D Y  O F  a
B O O

We apply the Bayesian m ethod as developed above to  the 
case study of the 2.38-2.60 ^m  ISO-SWS spectrum  of the 
metal-deficient K2III peculiar giant a  Boo and compare the 
newly obtained results w ith other frequentist studies, in par
ticular w ith the results of Decin et al. (2004). The same set 
of synthetic spectra has been used by these authors, i.e., a 
grid over discrete values in fi =  (Teff, logg, [Fe/H]), with 
param eter values (Decin et al. 2000):

Teff :4160K, 4230K , 4300K , 4370K , 4440K 
log g :1.20, 1.35, 1.50, 1.65, 1.80 
[Fe/H]:0.00, —0.15, —0.30, —0.50, —0.70.

As in Decin et al. (2004), other param eters needed to  com
pu te a proper spherically symmetric atm osphere model and 
synthetic spectrum  were kept fixed: the abundance of car
bon e (C )= 7 .9 6  ±  0.20, nitrogen e(N) =  7.61 ±  0.25, and 
oxygen e(O )= 8 .6 8  ±  0.20, and the m icroturbulent veloc
ity & =  1.7 ±  0.5 km /s). Each synthetic spectrum  is used as 
a prior mean in the hierarchical model of Sect. 5.2. There 
are 125 models in to tal, labelled by an (arbitrary) model 
number, as listed in Table 2. A proper angular diam eter 
was calculated for each model in the grid using Eq. (1) in 
Decin et al. (2004). The derived values are listed in Table 2.

Decin et al. (2000) derived an initial value for 
fi =  (Teff =4320  ±  140K, log g = 1 .5 0  ±  0.15dex, and 
[Fe/H] =  —0.50± 0.20dex), where the uncertainties on the 
derived param eters were guessed from (a) intrinsic uncer
tainties on the spectra (i.e., the ability to  distinguish be
tween different synthetic spectra at a specific resolution), 
(b) the quality of the data, (c) the values of the non
local Kolmogorov-Smirnov test statistic, and (d) the dis
crepancies between observational and synthetic spectra. As 
such, the estim ated model param eters and their uncertain
ties in Decin et al. (2000) for the ISO-SWS d ata  are model- 
dependent external values. We merely use these results to 
define the values for our grid param eters and for their spac
ing.

Let us now properly include both  statistical and sys
tem atic observational errors using the Bayesian approach.



E stim ating Stellar Param eters from  Spectra using a Hierarchical Bayesian Approach  7

F igure  2. Schematic representation of the model building and selection steps’ sequencing.

This will enable definition of a param eter range for T eff, log 
g, and [Fe/H], and selection of the optim al model within 
the model ensemble specified. The analysis will take points 
(a)-(d) into account in a m athem atically principled way, 
providing us w ith m odel-dependent (error) estimates. How 
to  calculate internal model-dependent error estimates is the 
subject of Sect. 7.3. In addition, the uncertainty about the 
model itself, reflected in the so-called between-model vari
ability, is accounted for and combined w ith the internal, or 
m odel-dependent, variability, thus producing a measure of 
to ta l variability. Simultaneously accounting for bo th  sources 
properly reflects the true  variability and hence produces 
standard  errors wider than  those obtained, for example, by

Griffin & Lynas-Gray (1999). This is extremely im portant 
to  avoid the risk of basing conclusions on noise rather than  
on signal.

For each model, an MCMC sim ulation (see Sect. 2.3) 
with 10,000 iterations, the first 5000 of which used as burn- 
in, was used to  calculate the posterior mean of ^  and 
T (m) (y, 0). Indeed, when applying MCMC, one typically ac
counts for the fact th a t the sequence takes some tim e before 
converging to  the true posterior d istribution by discarding 
its initial portion (Gilks et al. 1996). W hen in doubt as to 
how many iterates should be chopped off, it is prudent to 
choose a relatively high number. The variance functions are
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Table 2. Steller angular diameters (expressed in milli-arcseconds) and m,odel numbers (in between brackets) associated with the different 
m,odel parameters of the grid of synthetic spectra.

Teff [K]

log g 4160 4230 4300 4370 4440

1.20 21.16 (1) 20.95 (26) 20.72 (51) 20.51 (76) 20.27 (101)
1.35 21.20 (6) 21.05 (31) 20.81 (56) 20.59 (81) 20.31 (106)
1.50 21.23 (11) 21.09 (36) 20.85 (61) 20.62 (86) 20.34 (H I) [Fe/H] = -0.70
1.65 21.26 (16) 21.11 (41) 20.87 (66) 20.64 (91) 20.36 (116)
1.80 21.28 (21) 21.06 (46) 20.98 (71) 20.60 (96) 20.38 (121)

1.20 21.16 (2) 20.96 (27) 20.73 (52) 20.51 (77) 20.28 (102)
1.35 21.20 (7) 21.03 (32) 20.80 (57) 20.57 (82) 20.32 (107)
1.50 21.23 (12) 21.06 (37) 20.82 (62) 20.60 (87) 20.34 (H2) [Fe/H] = -0.50
1.65 21.26 (17) 21.08 (42) 20.84 (67) 20.62 (92) 20.37 (117)
1.80 21.28 (22) 21.06 (47) 20.83 (72) 20.61 (97) 20.54 (122)

1.20 21.16 (3) 20.96 (28) 20.73 (53) 20.52 (78) 20.28 (103)
1.35 21.20 (8) 21.01 (33) 20.78 (58) 20.56 (83) 20.32 (108)
1.50 21.23 (13) 21.04 (38) 20.81 (63) 20.59 (88) 20.35 (113) [Fe/H] =  -0.30
1.65 21.26 (18) 21.06 (43) 20.83 (68) 20.61 (93) 20.37 (118)
1.80 21.27 to co 21.06 (48) 20.83 (73) 20.78 (98) 20.40 (123)

1.20 21.16 (4) 20.96 (29) 20.74 (54) 20.52 (79) 20.29 (104)
1.35 21.20 (9) 21.00 (34) 20.77 (59) 20.55 (84) 20.32 (109)
1.50 21.23 (14) 21.02 (39) 20.79 (64) 20.57 (89) 20.35 (H4) [Fe/H] = -0.15
1.65 21.25 (19) 21.04 (44) 20.82 (69) 20.60 (94) 20.38 (119)
1.80 21.27 (24) 21.06 (49) 20.84 (74) 20.62 (99) 20.40 (124)

1.20 21.16 (5) 20.97 (30) 20.74 (55) 20.52 (80) 20.28 (105)
1.35 21.20 (10) 21.00 (35) 20.77 (60) 20.55 (85) 20.33 (110)
1.50 21.23 (15) 21.02 (40) 20.79 (65) 20.58 (90) 20.36 (115) [Fe/H] = 0.00
1.65 21.2 (20) 21.04 (45) 20.82 (70) 20.60 (95) 20.38 (120)
1.80 21.27 (25) 21.07 (50) 20.84 (75) 20.63 (100) 20.41 (125)

smoothed w ith linear mixed models and predicted values 
used for analysis.

To facilitate comparison w ith the frequentist results of 
Decin et al. (2004), the ranks listed in subsequent tables and 
figures are in accordance w ith the rebinned band 1A d a ta  of 
a  Boo, used by these authors.

7.1 D e te r m in a t io n  o f s te l la r  p a r a m e te r  ra n g e s

Results for the best ten  models, as well as for the 
models which ranked 15, 25, 50, 75, 100, and 125, are 
given in Table 3. Model 38 has lowest T ( y , ^ )  
value (Teff = 4230K , log g =  1.50dex, [Fe/H] =  —0.30dex) 
with T (38) (y ,^ ) =  490.1. Model 125 (Teff = 4440K , log 
g =  1.80 dex, [Fe/H] =  —0.00dex) has the highest value with 
T (125) (y ,^ ) =  1144.0. Posterior means as calculated using 
(13) and 95 % credible intervals, the Bayesian analog to  con
fidence intervals, are presented in Fig. 3. Fig. 4 shows the 
density estim ate for the posterior d istribution of T ( y ,  ^). 
The density of T (81)(y ,^ ), ranking 10th w ith T eff = 4370K , 
log g =  1.35 dex, [Fe/H] =  —0.70 dex, is located to  the right, 
relative to  the densities of the other top five models, un
derscoring a goodness-of-fit superior to  th a t of model 81, 
even though the 95 % credible intervals do overlap. The 
model-dependent param eter ranges as estim ated from the 
top 10 models in our Bayesian analysis range between 4160

Table 3. Measures for the goodness-of-fit Tn  for some selected 
models. The model was estimated using the predicted value of the 
linear mixed model for the variance functions. The expected loss 
values G(m) are given in units of 106. The ranks are chosen for 
ease of reference to Decin et al. (2004).

Rank Model Teff log g [Fe/H] t n
Expected 
loss G(m)

1 62 4300 1.50 -0.50 491.0 3.403
2 38 4230 1.50 -0.30 490.1 3.394
3 82 4370 1.35 -0.50 493.2 3.395
4 61 4300 1.50 -0.70 494.3 3.403
5 58 4300 1.35 -0.30 495.0 3.395
6 41 4230 1.65 -0.70 495.9 3.420
7 102 4440 1.20 -0.50 499.6 3.405
8 14 4160 1.50 -0.15 497.4 3.413
9 42 4230 1.65 -0.50 502.0 3.422
10 81 4370 1.35 -0.70 503.8 3.422

15 86 4370 1.50 -0.70 508.1 3.469
25 15 4160 1.50 0.00 515.1 3.487
50 9 4160 1.35 -0.15 566.4 3.607
75 11 4160 1.50 -0.70 684.8 3.970
100 117 4440 1.65 -0.50 937.4 4.995
125 125 4440 1.80 0.00 1144.0 5.728
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F igu re  3. Posterior means and 95% credible intervals for T(y,  ^) 
for 12 models in band 1A.

and 4440 K for the effective tem perature, between 1.20 
and 1.65 dex for the logarithm  of the gravity and between
— 0.70 and —0.15 dex for the metallicity. It will be shown in 
Sect. 7.3 th a t the variability reflected in such ranges can use
fully be combined w ith the internal error to  produce relevant 
measures of to ta l variability, meaning th a t the variability 
which would follow if the true model were known is com
bined w ith variability resulting from uncertainty about the 
model itself. Note th a t, by using the frequentist approach of 
Decin et al. (2004), the same set of models was selected us
ing the band 1A ISO-SWS d ata  of a  Boo, i.e., the inclusion 
of the systematic and statistical errors in the (Bayesian) 
analysis does not lead to  different param eter ranges. This 
point is taken up in the Discussion.

7.2 E x p e c te d  s q u a re d  e r r o r  loss

Model 38 (Teff = 4230K , logg =  1.50 dex, [Fe/H] =  —0.30 
dex) has the smallest value for L28=3.394 x 106 while model 
125 reaches the highest value, L125 =  5.78 28 x 106. Figs. 5 
and 6 show the observed spectrum , the synthetic spectrum , 
and the posterior mean calculated from (13), for models 38 
and 125. For model 38, the posterior mean and the observed 
spectrum  closely agree along the entire wavelength range. 
The discrepancies are larger for model 125. Note how the 
posterior mean for the spectrum  always lies between the ob
served and synthetic spectra. It is also clear for bo th  models 
th a t the observed spectrum  is more dom inant at the end of 
band 1A. Especially for model 125 (Fig. 6 ), the posterior 
mean and the observed spectrum  become closer when ap
proaching the end of the band. Based on this model selection 
criterion, model 38 w ith stellar param eters T eff = 4230K , log 
g =  1.50 dex and [Fe/H] =  —0.30 dex is selected as providing

----------  62

T (y ,m u )

F igu re  4. Kernel density estimate for the posterior distribution 
o f T (m)(y,v).

the best representation of the band 1A ISO-SWS d ata  of a  
Boo.

7.3 D e te rm in a t io n  o f co n fid en ce  in te rv a ls

Fig. 7 shows the posterior means and the 95% credible inter
vals for log(a2) and lo g (a ^ ), as well as the shrinkage factor 
determ ined by a linear mixed model. The variance function 
for bo th  a  and a M is substitu ted  into the hierarchical model.

As was explained in Sects. 3.2 and 5, we had to  re
strict calculation of the synthetic spectra to  a well-defined 
grid, w ith spacing determ ined by the analysis of Decin et al. 
(2000). However, as we only have the Lm values for the 
predefined grid points, the accuracy of the derived param 
eter range for T eff, log g, and [Fe/H] is bounded by the 
grid spacing. To estim ate the confidence intervals around 
the stellar param eters and to  test the sensitivity of the stel
lar param eters to  2.38-2.60 ^m  IR  d a ta  of a  Boo, we have 
constrained the choice of the stellar model and its descrip
tive param eters by investigating the behaviour of interpo
lated stellar models. This kind of procedure was also fol
lowed by Griffin & Lynas-Gray (1999), who have sim ulated 
a non-linear analytic function to  the interpolated model flux 
for the purpose of a (frequentist) least-square analysis.

We chose not to  interpolate between the synthetic spec
tra in the grid, bu t rather to  calculate the stratification of a 
theoretical atmosphere model of interm ediate mass, gravity 
or effective tem perature by interpolating between theoret
ical models in the existing grid, and then  to  com pute the 
corresponding synthetic spectrum . One may argue th a t for 
the type of medium-resolution spectra we are dealing with
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model 125

wavelength[m icron]

F igu re  5. Model 38. Ratio of the posterior mean for the syn
thetic spectrum of model 38 to the observed spectrum of a Boo 
(Teff =4230K, log g = 1.50 dex, [Fe/H] = -0.30 dex) and poste
rior mean for the spectrum (full line) in band 1A.

wavelength[m icron]

F igu re  6. Model 125. Ratio of the posterior mean for the syn
thetic spectrum of model 125 to the observed spectrum of a Boo 
(Teff = 4440 K, log g = 1.80 dex, [Fe/H] = 0.00 dex) and posterior 
mean for the spectrum (full line) in band 1A.

the difference between the two approaches, i.e., interpola
tion between the synthetic spectra of the existing grid ver
sus com putation of new synthetic spectra from interpolated 
theoretical model structures of interm ediate fi, will be neg
ligible. However, our purpose is to  develop a general tool 
which, for example, may also be used for observed high
resolution spectra. Additionally, since spectral lines behave 
very non-linearly due to  saturation, blending, complex de
pendency on the (molecular) opacities for cool-star atm o
spheres,. . . interpolating between synthetic spectra should 
be avoided. For the purpose of the interpolation between the 
models, the quantities as T  (tem perature), log P e (electron 
pressure), log P g (gas pressure), log arad (radiative acceler
ation) , and log k (extinction coefficient) were interpolated 
linearly on log g or [Fe/H] (see e.g. Plez 1992). To interpo
late in T eff, the tem perature distribution T new (t ) was scaled 
as T new (t ) =  ( T f f  /T0ffd) * T oid(T), followed by a pressure 
integration to  calculate the proper P e , P g, . .. To judge upon 
the accuracy, we have interpolated between T eff =  4230 K 
and 4370K to obtain T eff =  4300K, between log g =  1.35 
and 1.65 to  obtain log g =  1.50, and between [Fe/H] =  —0.30 
and —0.70 to  obtain [Fe/H] =  —0.50 and have compared the 
interpolated model structures (and resulting synthetic spec
tra) w ith the existing models (and spectra) from the grid. 
The largest difference occurs for the model w ith the interpo
lated m etallicity ([Fe/H] =  —0.50) augmenting to  5 % for P g 
a t the outerm ost layer of the atm osphere model. This how

ever only yields a discrepancy between the original theoret
ical spectrum  and the one calculated from this interpolated 
model of maximum 0.1 % for a resolution of 1500 (while for 
a high-resolution spectrum  of A A =  0.5 A, this augm ents to 
0.55%), proving the accuracy of our interpolation. Subse
quently, we performed a 1-dimensional interpolation for the 
param eter values fi of the selected top 10 models. The pa
ram eter spacing for the interpolated grid was A T eff =  5K , 
Alog g =  0.01 dex, and A[Fe/H] =  0.01 dex. Synthetic spec
tra  for these interpolated fi were then computed.

Two comments are in place. First, the reduction of the 
num ber of models to  the best 10 is not an intrinsic fea
tu re  of the Bayesian method. R ather, having conducted the 
aforementioned frequentist analyses, such knowledge can be 
incorporated into the Bayesian analysis by way of expert 
priors. In addition, the choice for interpolation is not in trin
sically linked to  the Bayesian m ethod neither, bu t rather 
should be viewed as one of the building blocks of our pro
posed method.

Confidence intervals for each of the three param eters 
were obtained by calculating the profile posterior likelihood 
for each of the interpolated models, by holding the two pa
ram eters fixed and using the interpolated grid over the th ird  
param eter. In to tal, 27 interpolated models for T eff, 29 in
terpolated  models for log g, and 39 interpolated models for 
[Fe/H] are constructed around one model. Let, for example, 
Gk, k =  1 ,..  . , 27, be the profile log-likelihood in tem pera-
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(a): log(STDEV-tagA2) in band 1A (b): log(SPARE-tagA2) in band 1A

2 40 2 45 2 50 2 55 2 60 

w ave leng th [m icron ]

(c): shrinkage factor in band 1A

Table 4. Posterior maximum profile likelihood and interval esti
mates for Teff, log g and [Fe/H] for model 62.

2 40 2 45 2 50 2 55 2 61 

wave leng th [m icron ]

2 40 2 45 2 50 2 55 

w ave leng th [m icron ]

F igu re  7. Variance functions. The models were fitted by applying 
a linear mixed model for the data. Panel a: log(STDEV-tag)2 in 
band 1A with the estimated model and 95 % credible intervals. 
Panel b: log(SPARE-tag) 2 in band 1A with the estimated model 
and 95 % credible intervals. Panel c: shrinkage factor in band 1A 
with the estimated model and 95 % credible intervals.

tu re  for the k th  interpolated model. Gk is conditioned upon 
the values of log g and [Fe/H]. The normalized profile log- 
likelihood is given by 
D _  Gfc -  min(Gfc) 

k max(Gfc) — min(Gfc)
The interval estim ate for T eff, log g or [Fe/H] is the set 
of all values of T eff, log g or [Fe/H] for which the norm al
ized profile likelihood exceeds 0.9. Table 4 and Fig. 8 ex
hibit a typical example for determ ining the confidence in
tervals (here, for model 62, having rank 1 when considering 
all evidence combined, bo th  provided here and assembled 
from the literature). For all of the top 10 models, the range 
in the 90% confidence intervals is ~  50 K in tem perature, 
~  0.1 dex in log g and ~  0 .2dex in [Fe/H]. These values 
thus specify the precision by which the stellar param eters 
can be determ ined, including all sources of variability. As 
a consequence, the best set of stellar param eters w ith the 
associated m odel-dependent internal error estim ates for a  
Boo consists of T eff =4230 ±  25 K, log g = 1 .5 0  ±  0.05 dex, 
and [Fe/H] =  —0.30 ±  0.10 dex.

Our estim ates assume th a t the model from which they 
are calculated is the correct one. Im portantly  though, this 
model itself is subject to  uncertainty, illustrated by the fact 
th a t not a single model bu t, say, 10 models (Table 3) are 
reasonable candidates. Constructing ranges from such a col
lection of models is useful in its own right, bu t the informa
tion contained therein should ideally be translated  into an 
additional variance term , to  be added to  the internal stan 
dard  errors. This can formally be done by considering the

ParameterMaximum (90% C.I.)

Teff 4295 (4273; 4323)
log g 1.47 (1.415; 1.52)
[Fe/H] -0.57 (-0.67; -0.48)

(a) (b)

4280 4320 

Teff

1.40 1.45 1.50 1.55 1.60 1.6 

log g

(c)

-0.5

[Fe/H]

F igu re  8. Profile likelihood for model 62. Panel (a): profile like
lihood for Teff, panel (b): profile likelihood for log g, and panel 
(c): profile likelihood for [Fe/H].

to ta l variability surrounding a param eter estim ate / :

V ar(/)  =  E[Var(/3)|M ] +  V ar[£(/3)|M ],

where M  represents ‘model’. The first term  on the right 
hand side is the internal variance estim ate, and is consis
tently  estim ated by the m ethod outlined above. The sec
ond term  stands for the variability across models. W hen 
choosing, for example, the best 10 models as a represen
tative set, one merely needs to  calculate the sample vari
ance of the corresponding 10 estimates. For T eff, one ob
tains 6312.2, added to  252, yielding 6937.2 and producing an 
improved standard  error: Teff =  4230 ±  83 K. For the other 
two quantities, the corresponding improved error estim ates 
are: log g =  1.50 ±  0.15 dex, and [Fe/H] =  —0.30 ±  0.21 dex. 
These error estim ates are larger th an  those obtained by 
Griffin & Lynas-Gray (1999), who ignored the between- 
model variability.

4240 4360
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8 D IS C U S S IO N

8.1 C o m p a r iso n  w ith  o th e r  s ta t i s t ic a l  m e th o d s

The proposed Bayesian m ethod can com pete w ith other 
m ethods used nowadays for the evaluation of stellar spec
tra  for deducing stellar param eters. To see this, we discuss 
in this section historical work in the same field and analyse 
sources of involved errors.

It would indeed be most convincing when we could com
pare our proposed Bayesian analysis w ith other (Bayesian) 
m ethods including bo th  system atic and statistical obser
vational error estim ates consistently throughout the whole 
analysis of evaluating observational spectra w ith theoreti
cal predicitons. However, as far as we are aware of, it is 
the first tim e th a t a statistical m ethod including these spec
ifications has been developed and used. Nowadays, state- 
of-the-art Bayesian com putational techniques are more and 
more leaping into the astronomical field, however w ith the 
m ain purpose to  detect a line in a spectral model or a 
source above background (Protassov et al. 2002, and ref
erences therein), to  autom atically classify stellar spectra 
(Cheeseman & Stutz 1996), to  analyze Poisson count data  
(Kraft et al. 1991), to  analyze event arrival times of peri
odicity (Gregory & Loredo 1992), to  analyze helioseismol- 
ogy d a ta  (Morrow & Brown 1988), to  deconvolve astrophys- 
ical images (Gull 1989). van Dyk et al. (1999) were the only 
ones who have employed Bayesian techniques to  analyse 
low-count, high-resolution astrophysical spectral data. They 
however have modelled the source energy spectrum  as a mix
tu re  of several Gaussian line profiles and a generalized linear 
model which accounts for the continuum, i.e., one assumes 
th a t a transform ation (e.g., log) of the model is linear in a 
set of independent variables, and they have not com puted 
a full theoretical atm osphere model and corresponding syn
thetic spectrum.

The frequentist approach is the m ethod most often used 
by astronomers. The basic approach for modelling d a ta  in 
bo th  the Bayesian and the frequentist case is the same, the 
main difference being th a t a frequentist route often is more 
elaborate th an  its Bayesian counterpart: (i) one chooses or 
designs a figure-of-merit function  yielding at the end best
fit param eters, (ii) one assesses the appropriateness of the 
estim ated param eters from a goodness-of-fit analysis, and 
(iii) one finally tries to  determ ine the likely errors, in an 
ad hoc fashion, for the best-fitting param eters. A few com
m ents are in place: (1) many practitioners never proceed 
beyond item  (i), (2) there are numerous instances of in
appropriate use of frequentist m ethods since practitioners 
may fail to  account for a m ethod’s statistical lim itations, 
calling substantive scientific results into question (as nicely 
illustrated by Protassov et al. 2002), and (3) many s ta tisti
cal methods, Bayesian and frequentist alike, are designed 
for use w ith closed-form expression. A few examples us
ing this kind of frequentist approach include K atz et al.
(1998); Griffin & Lynas-Gray (1999); Cami et al. (2000); 
de Bruyne et al. (2003); Decin et al. (2004). A nice example 
in which a linear regression m ethod has been developed for 
the analysis of astronomical d a ta  w ith measurem ent errors 
and intrinsic scatter can be found in A kritas & Bershady
(1996). As sta ted  before, two im portant conditions made 
us shift away from frequentist methods: (1) the inclusion of 
bo th  statistical and system atic measurem ent uncertainties,

and (2) the non-availability of a closed analytic formula to 
represent the stellar spectrum.

8.2 O n  th e  a p p l ic a tio n  to  th e  c a se -s tu d y  o f a  B oo

Table 5 summarizes a comprehensive literature study on 
the estim ated stellar param eters of our case-study a  Boo. 
A more elaborate version of this table, listing addition
ally other param eters such as the luminosity, the mass, 
the 12C /13C-ratio, and a short description of the m ethods 
and /o r d a ta  used by the various authors, can be found in 
the appendix of Decin et al. (2000). The table has been up
dated w ith the results of K rticka & Stefl (1999), Decin et al.
(2004), and this study, the only ones using spectrum  fitting 
to  determ ine the stellar param eters for a  Boo, during the 
past seven years. Provided th a t error estim ates are given by 
the authors, they are listed in Table 5. It is clear th a t many 
authors do not provide estim ates of precision. Second, those 
who do so typically do not distinguish between the sources of 
imprecision accounted for, w ith the noteworthy exception of 
Griffin & Lynas-Gray (1999) and Decin et al. (2004). These 
considerations underscore the usefulness of our method.

Authors using spectroscopic requirements (i.e., ionisa
tion balance, independence of the abundance of an ion versus 
the excitation potential and equivalent w idth) to  estim ate 
the stellar param eters for a  Boo are van Paradijs & Meurs 
(1974), Mackle et al. (1975), Lam bert & Ries (1981), 
Bell et al. (1985), Edvardsson (1988), and Bonnell & Bell 
(1993). From  these results, we infer th a t the values for Teff 
range between 4260 and 4490 K, for log g ranging between 
0.90 and 2.01 dex, and for [Fe/H] ranging from —0.56 to
— 0.60dex. The maximum quoted uncertainties are 100K, 
0.46 dex and 0.14 dex, respectively, although it is not always 
clear whether the authors mention an internal or external 
error estimate. As has been pointed out by, for example, 
Smith & Lam bert (1985), one can easily assess an exter
nal error estim ate by varying the derived param eter values. 
This normally results in A T eff ~  200K, A log g ~  0.2 dex and 
A[Fe/H] «  0.2 dex.

Only few authors used one or other form of spec
trum  fitting  m ethod to  estim ate stellar param eters, amongst 
them  Scargle & Strecker (1979), M anduca et al. (1981), 
Peterson et al. (1993), K rticka & Stefl (1999), Decin et al.
(2003), and Decin et al. (2004). In the first two of these 
manuscripts, the effective tem perature was determ ined from 
the flux-curve shape alone, while in the others a p art of the 
observational spectrum  either in the visible or in the near- 
infrared was used. Values for Teff range between 4060 and 
4390 K (with a maximum quoted uncertainty of 435 K from 
M anduca et al. (1981)), for log g between 1.5 and 2.0dex 
(with maximum uncertainty 0.2 dex) and for [Fe/H] between
— 0.27 and —0.50dex (with maximum uncertainty 0.1 dex). 
According to  K rticka & Stefl (1999), the different estim ates 
for the stellar param eters as determ ined from different spec
tra l regions using a minimum least-square analysis range be
tween 4200 and 4600 K for T eff, between 1.53 and 2.35 for log 
g and between —0.155 and —0.461 for [Fe/H]. Peterson et al. 
(1993) tabulated  as results: T eff = 4 3 0 0 ± 3 0 K , log g =  1 .5±
0.2 dex, and [Fe/H] =  —0.5 ±  0.1 dex. We could however not 
trace back if the quoted error estim ates include external 
errors or only internal uncertainties. Only KrtiScka & SSte fl
(1999); Decin et al. (2003, 2004) have applied a frequentist
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Table 5. Literature study of a  Boo: the columns tabulate the effective temperature in Kelvin, the logaritm of the gravity in cm /s2, and 
the metallicity, respectively. Values assumed or adopted are given in parenthesis. An error estimate is listed whenever provided by the 
authors.

Teff log g [Fe/H] Reference

4350 ±  50 1.95 ±  0.25 -0 .5 van Paradijs & Meurs (1974)
4260 ±  50 0.90 ±  0.35 Mackle et al. (1975)
4410 ±  80 Blackwell & Shallis (1977)

4240 Linsky & Ayres (1978)
4060 ±  150 Scargle & Strecker (1979)
4420 ±  150 Blackwell et al. (1980)

(4260) (1.6) Lambert et al. (1980)
4490 ±  100 2.01 ±  0.46 -0.56 ±  0.07 Lambert & Ries (1981)
4350 ±  435 Manduca et al. (1981)
4205 ±  150 Tsuj i (1981)
4375 ±  50 (1.5) (-0.5) Frisk et al. (1982)

4350 1.8 (-0.51) Kjærgaard et al. (1982)
4490 ±  200 2.6 ±  0.3 -0.55 ±  0.30 Burnashev (1983)

4370 Burnashev (1983)
(4375) (1.57) Harris & Lambert (1984)
(4375) 1.6 ±  0.2 -0 .5 Bell et al. (1985)
(4410) (> 0.98) (-0.50) Gratton (1985)
(4225) 1.6 ±  0.2 (-0.56) Judge (1986)
4400 1.7 -0 .6 Kyrolainen et al. (1986)

(4375) 1.5 ±  0.5 Tsuj i (1986)
(4300) (1.74) Altas (1987)

4294 ±  30 di Benedetto & Rabbia (1987)
(4375) 1.97 ±  0.20 -0.42 Edvardsson (1988)
4321 (1.8) (-0.51) Bell & Gustafsson (1989)
4340 1.9 -0.39 Brown et al. (1989)

4294 ±  30 Volk & Cohen (1989)
4300 2.0 -0.69 ±  0.10 Fernandez-Villacanas et al. (1990)

4280 ±  200 2.19 ±  0.27 -0.60 ±  0.14 McWilliam (1990)
4362 ±  45 Blackwell et al. (1991)
4250 ±  80 1.6 ±  0.3 Judge & Stencel (1991)

(4375) 1.5 ±  0.5 Tsuj i (1991)
4265 Engelke (1992)
4450 1.96 -  1.98 -0 .5 Bonnell & Bell (1993)
4350 1.71 -  1.73 -0 .5 Bonnell & Bell (1993)
4250 1.43 -  1.44 -0 .5 Bonnell & Bell (1993)
4250 1.81 -  1.82 0.0 Bonnell & Bell (1993)

4300 ±  30 1.5 ±  0.2 -0 .5  ±  0.1 Peterson et al. (1993)
(4260) (0.9) (-0.77) Gadun (1994)
(4420) (1.7) (-0.50) Gadun (1994)
4362 2.4 Cohen et al. (1996)

4303 ±  47 Quirrenbach et al. (1996)
(4375) (1.5) Aoki & Tsuj i (1997)
4300 1.4 -0.47 Pilachowski et al. (1997)

4291 ±  48 di Benedetto (1998)
4255 di Benedetto (1998)

4628 ±  210 Dyck et al. (1998)
4320 Hammersley et al. (1998)

4321 ±  44
-0.547 ±  0.021

Perrin et al. (1998) 
Taylor (1999)

4290 ±  30 Griffin & Lynas-Gray (1999)*
4291.9 ±  0.7 1.94 ±  0.05 -0.68 ±  0.02 Griffin & Lynas-Gray (1999)**

4390 ±  90 2.0 ±  0.2 -0.27 ±  0.05 Krticka & Stefl (1999)
4320 ±  140 1.50 ±  0.15 -0.50 ±  0.20 Decin et al. (2000)
4160 -  4300 1.35 -  1.65 -0.30 -  0.00 Decin et al. (2004)
4230 ±  83 1.50 ±  0.15 -0.30 ±  0.21 This paper

*: model-independent external errors; **: model-dependent internal errors
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least-square m ethod to  optimize the stellar param eters for 
a  Boo using spectrum  fitting. None of them  included sys
tem atic and statistical error estimates.

Including bo th  error sources, a  and a  does not re
sult in different ranges for the fundam ental stellar param e
ters T eff, log g and [Fe/H] of a  Boo, relative to  Decin et al.
(2004), even though the la tte r authors did not take measure
ment errors into account. Possibly, the error measurem ents 
on the different d a ta  points are smaller th an  the difference 
between the observational d a ta  and even the best model, 
which then  would not result in gain of evidence when includ
ing the errors. Comparing the ratio of the observational d a ta  
to  the synthetic d a ta  of model 62 (having rank 1) w ith a  and 
a  , we note th a t all of them  have the same order of magni
tude. This also indicates th a t the remaining structure when 
considering y (t) /# (62) ( t) , as in Decin et al. (2004), is not due 
to  measurem ent uncertainties bu t rather indicates th a t some 
patte rn  in the observational d a ta  is not captured by the the
oretical predictions. Plausible explanations for this are: (1) 
the fact we kept the C (carbon), N (nitrogen), and O (oxy
gen) abundance and the m icroturbulence fixed, (2) problems 
with the tem perature distribution in the outerm ost layers of 
the model photosphere leading to  an underestim ation of the 
low-level v ibration-rotation lines of CO (carbon monoxide), 
and (3) problems w ith the d a ta  reduction.

9 C O N C L U S IO N S  A N D  F U T U R E  P R O S P E C T S

Estim ating the stellar atmospheric param eters from an ob
served spectrum  w ith given error estim ates entails a model 
selection task  in which we had to  select a synthetic spectrum  
from a collection of 125 models. Frequentist m ethods based 
on the Kolmogorov-Smirnov test and x 2 statistics to  assess 
the goodness-of-fit are unable to  incorporate the so-called 
statistical and system atic measurem ent errors of the obser
vational d a ta  into the analysis. Our hierarchical Bayesian 
model w ith a norm al model for the likelihood and conjugate 
normal prior is capable of taking bo th  of these errors into 
account. Using the Bayesian weighted x 2 statistics to  assess 
the goodness-of-fit, the results based on the 2.38-2.60 ^m  
ISO-SWS d a ta  of a  Boo are as follows: T eff ranges between 
4160 and 4440K, log g ranges between 1.20 and 1.65dex 
and [Fe/H] ranges between —0.15 and —0.70 dex. For the 
model selection process, we have used the predictive squared 
error loss function. The param eters of the model w ith the 
best representation of the ISO-SWS d a ta  are Teff =  4230 K 
± 8 3 K), log g =  1.50dex ± 0 .1 5 dex), and [Fe/H] =  —0.30dex 
±0.21 dex).

Not only here bu t for a range of applications it is conve
nient to  first rank the synthetic spectra in the grid, w ithout 
including a  and a  . W hen including the observational er
rors, one then does not have to  apply the Bayesian analysis 
to  all models, like the 125 considered here, bu t only to  a se
lection of models th a t are of interest, e.g., the models which 
have the highest ranks and perhaps a few other models which 
have a poor goodness-of-fit.

It would be of interest, though outside of the scope of 
this paper, to  apply the proposed m ethod to  (1) a larger set 
of standard  stellar candles analysed in Decin et al. (2003), 
(2) a 7-dimensional grid, in which not only the effective 
tem perature, the gravity and the m etallicity are variable,

bu t also the carbon, nitrogen and oxygen abundance and 
the m icroturbulence, and (3) the synthesis analysis of high
resolution optical data.

We emphasize th a t the hierarchical Bayesian model as 
proposed in this paper is a general m ethod which is able 
to  objectively determ ine the param eter ranges using the 
synthesis technique. In contrast to  previous studies, this 
Bayesian m ethod incorporates the system atic and s ta tisti
cal measurem ent error in the analysis of the data, and so 
in the determ ination of the stellar param eters and their un
certainty intervals. A step-by-step algorithmic explanation 
of the Bayesian analysis developed in this paper and the 
source code thereof are available upon request.
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