73 research outputs found

    Evaluation of microbial consortia and chemical changes in spontaneous maize bran fermentation

    Get PDF
    Sustainable exploitation of agro-industrial by-products has attracted great interest in cereal bran valorization. In this research, a polyphasic approach has been carried out to characterize maize bran at microbiological and chemical level during a sourdough like fermentation process, in order to enhance its technological and nutritional properties. Autochthonous microbiota was isolated at different refreshment steps and subjected to identification and molecular characterization. Fermentation was characterized by a rapid increase in lactic acid bacteria and yeasts, with a co-dominance, at the initial stage, of Weissella spp., Pediococcus spp. and Wickerhamomyces anomalus. At the end of the fermentation, a natural selection was produced, with the prevalence of Lactobacillus plantarum, Lactobacillus brevis and Kazachstania unispora. This is the first time that a specific association between LAB and yeasts is reported, during the maize bran fermentation process. Enzymatic activities related to this microbial consortium promoted a \u201cdestructuration\u201d of the fiber fraction, an increase in soluble dietary fiber and a reduction of phytic acid content. Our data also evidenced a noticeable increment in ferulic acid. The results obtained indicate that fermentation processes represent an efficient biotechnological approach to increase nutritional and functional potential of maize bran. Moreover, the characterization of microbiota involved in natural fermentation process will allow the selection of specific biotypes, with appropriate metabolic and enzymatic activities, to conduct \u201ctailored\u201d fermentation processes and improve brans or whole-meal flours from both nutritional and technological points of view

    High yield of adult oligodendrocyte lineage cells obtained from meningeal biopsy

    Get PDF
    Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks). Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration

    Regional mechanical and biochemical properties of the porcine cortical meninges

    Get PDF
    peer-reviewedThe meninges are pivotal in protecting the brain against traumatic brain injury (TBI), an ongoing issue in most mainstream sports. Improved understanding of TBI biomechanics and pathophysiology is desirable to improve preventative measures, such as protective helmets, and advance our TBI diagnostic/prognostic capabilities. This study mechanically characterised the porcine meninges by performing uniaxial tensile testing on the dura mater (DM) tissue adjacent to the frontal, parietal, temporal, and occipital lobes of the cerebellum and superior sagittal sinus region of the DM. Mechanical characterisation revealed a significantly higher elastic modulus for the superior sagittal sinus region when compared to other regions in the DM. The superior sagittal sinus and parietal regions of the DM also displayed local mechanical anisotropy. Further, fatigue was noted in the DM following ten preconditioning cycles, which could have important implications in the context of repetitive TBI. To further understand differences in regional mechanical properties, regional variations in protein content (collagen I, collagen III, fibronectin and elastin) were examined by immunoblot analysis. The superior sagittal sinus was found to have significantly higher collagen I, elastin, and fibronectin content. The frontal region was also identified to have significantly higher collagen I and fibronectin content while the temporal region had increased elastin and fibronectin content. Regional differences in the mechanical and biochemical properties along with regional tissue thickness differences within the DM reveal that the tissue is a non-homogeneous structure. In particular, the potentially influential role of the superior sagittal sinus in TBI biomechanics warrants further investigation

    The Early Postnatal Nonhuman Primate Neocortex Contains Self-Renewing Multipotent Neural Progenitor Cells

    Get PDF
    The postnatal neocortex has traditionally been considered a non-neurogenic region, under non-pathological conditions. A few studies suggest, however, that a small subpopulation of neural cells born during postnatal life can differentiate into neurons that take up residence within the neocortex, implying that postnatal neurogenesis could occur in this region, albeit at a low level. Evidence to support this hypothesis remains controversial while the source of putative neural progenitors responsible for generating new neurons in the postnatal neocortex is unknown. Here we report the identification of self-renewing multipotent neural progenitor cells (NPCs) derived from the postnatal day 14 (PD14) marmoset monkey primary visual cortex (V1, striate cortex). While neuronal maturation within V1 is well advanced by PD14, we observed cells throughout this region that co-expressed Sox2 and Ki67, defining a population of resident proliferating progenitor cells. When cultured at low density in the presence of epidermal growth factor (EGF) and/or fibroblast growth factor 2 (FGF-2), dissociated V1 tissue gave rise to multipotent neurospheres that exhibited the ability to differentiate into neurons, oligodendrocytes and astrocytes. While the capacity to generate neurones and oligodendrocytes was not observed beyond the third passage, astrocyte-restricted neurospheres could be maintained for up to 6 passages. This study provides the first direct evidence for the existence of multipotent NPCs within the postnatal neocortex of the nonhuman primate. The potential contribution of neocortical NPCs to neural repair following injury raises exciting new possibilities for the field of regenerative medicine

    Inter-society consensus for the use of inhaled corticosteroids in infants, children and adolescents with airway diseases

    Get PDF
    Background: In 2019, a multidisciplinary panel of experts from eight Italian scientific paediatric societies developed a consensus document for the use of inhaled corticosteroids in the management and prevention of the most common paediatric airways disorders. The aim is to provide healthcare providers with a multidisciplinary document including indications useful in the clinical practice. The consensus document was intended to be addressed to paediatricians who work in the Paediatric Divisions, the Primary Care Services and the Emergency Departments, as well as to Residents or PhD students, paediatric nurses and specialists or consultants in paediatric pulmonology, allergy, infectious diseases, and ear, nose, and throat medicine. Methods: Clinical questions identifying Population, Intervention(s), Comparison and Outcome(s) were addressed by methodologists and a general agreement on the topics and the strength of the recommendations (according to the GRADE system) was obtained following the Delphi method. The literature selection included secondary sources such as evidence-based guidelines and systematic reviews and was integrated with primary studies subsequently published. Results: The expert panel provided a number of recommendations on the use of inhaled corticosteroids in preschool wheezing, bronchial asthma, allergic and non-allergic rhinitis, acute and chronic rhinosinusitis, adenoid hypertrophy, laryngitis and laryngospasm. Conclusions: We provided a multidisciplinary update on the current recommendations for the management and prevention of the most common paediatric airways disorders requiring inhaled corticosteroids, in order to share useful indications, identify gaps in knowledge and drive future research

    Consensus statement of the Italian society of pediatric allergy and immunology for the pragmatic management of children and adolescents with allergic or immunological diseases during the COVID-19 pandemic

    Get PDF
    The COVID-19 pandemic has surprised the entire population. The world has had to face an unprecedented pandemic. Only, Spanish flu had similar disastrous consequences. As a result, drastic measures (lockdown) have been adopted worldwide. Healthcare service has been overwhelmed by the extraordinary influx of patients, often requiring high intensity of care. Mortality has been associated with severe comorbidities, including chronic diseases. Patients with frailty were, therefore, the victim of the SARS-COV-2 infection. Allergy and asthma are the most prevalent chronic disorders in children and adolescents, so they need careful attention and, if necessary, an adaptation of their regular treatment plans. Fortunately, at present, young people are less suffering from COVID-19, both as incidence and severity. However, any age, including infancy, could be affected by the pandemic. Based on this background, the Italian Society of Pediatric Allergy and Immunology has felt it necessary to provide a Consensus Statement. This expert panel consensus document offers a rationale to help guide decision-making in the management of children and adolescents with allergic or immunologic diseases
    • …
    corecore