30 research outputs found

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion related to the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA)

    Get PDF
    <p>Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver a scientific opinion on the Tolerable Upper Intake Level (UL) of the n-3 LCPUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Available data are insufficient to establish a UL for n-3 LCPUFA (individually or combined) for any population group. At observed intake levels, consumption of n-3 LCPUFA has not been associated with adverse effects in healthy children or adults. Long-term supplemental intakes of EPA and DHA combined up to about 5 g/day do not appear to increase the risk of spontaneous bleeding episodes or bleeding complications, or affect glucose homeostasis immune function or lipid peroxidation, provided the oxidative stability of the n-3 LCPUFAs is guaranteed. Supplemental intakes of EPA and DHA combined at doses of 2 6 g/day, and of DHA at doses of 2 4 g/day, induce an increase in LDL-cholesterol concentrations of about 3 % which may not have an adverse effect on cardiovascular disease risk, whereas EPA at doses up to 4 g/day has no significant effect on LDL cholesterol. Supplemental intakes of EPA and DHA combined at doses up to 5 g/day, and supplemental intakes of EPA alone up to 1.8 g/day, do not raise safety concerns for adults. Dietary recommendations for EPA and DHA based on cardiovascular risk considerations for European adults are between 250 and 500 mg/day. Supplemental intakes of DHA alone up to about 1 g/day do not raise safety concerns for the general population. No data are available for DPA when consumed alone. In the majority of the human studies considered, fish oils, also containing DPA in generally unknown (but relatively low) amounts, were the source of EPA and DHA.</p&gt

    Postprandial lipemic and inflammatory responses to high-fat meals: a review of the roles of acute and chronic exercise

    Full text link

    The omega-3 fatty acid docosahexaenoate attenuates endothelial cyclooxygenase-2 induction through both NADP(H) oxidase and PKCΔ inhibition

    No full text
    A high intake of the omega-3 fatty acid docosahexaenoate [docosahexaenoic acid (DHA)] has been associated with systemic antiinflammatory effects and cardiovascular protection. Cyclooxygenase (COX)-2 is responsible for the overproduction of prostaglandins (PG) at inflammatory sites, and its expression is increased in atheroma. We studied the effects of DHA on COX-2 expression and activity in human saphenous vein endothelial cells challenged with proinflammatory stimuli. A ≄24-h exposure to DHA reduced COX-2 expression and activity induced by IL-1, without affecting COX-1 expression. DHA effect depended on the NF-ÎșB-binding site in the COX-2 promoter. EMSAs confirmed that DHA attenuated NF-ÎșB activation. Because MAPK, PKC, and NAD(P)H oxidase all participate in IL-1-mediated COX-2 expression, we also tested whether these enzymes were involved in DHA effects. Western blots showed that DHA blocked nuclear p65 NF-ÎșB subunit translocation by decreasing cytokine-stimulated reactive oxygen species and ERK1/2 activation by effects on both NAD(P)H oxidase and PKCΔ activities. Finally, to address the question whether DHA itself or DHA-derived products were responsible for these effects, we inhibited the most important enzymes involved in polyunsaturated fatty acid metabolism, showing that 15-lipoxygenase-1 products mediate part of DHA effects. These studies provide a mechanistic basis for antiinflammatory and possibly plaque-stabilizing effects of DH

    Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    Get PDF
    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies

    Release of VCAM-1 associated endothelial microparticles following simulated SCUBA dives

    Get PDF
    Microparticles (MP) are shed into the circulation from endothelium following activation or apoptosis. Vascular cell adhesion molecule-1 (VCAM-1) is expressed on endothelial cells following activation and here we report quantification of VCAM-1 positive microparticles (VCAM + MP) following simulated SCUBA dives, breathing either air or oxygen. VCAM + MP were quantified pre-dive (09:00 and 13:00) and post-dive (+1, +3 and +15 h) on both air and oxygen dives and compared with control samples taken from the same subjects. VCAM + MP followed a similar trend in all experiments, however both dives caused a change in endothelial state, as measured by VCAM + MP. A significant increase in VCAM + MP was observed 1 h post-air dive relative to the control (p = 0.013), which was not observed after the oxygen dive (p = 0.095). Oxidative stress (TBARS) was correlated with VCAM + MP. Data presented highlights the potential of MP as a biological marker of both endothelial state and decompression illness
    corecore