117 research outputs found
Fetal Electrocardiogram (fECG) Gated MRI
We have developed a Magnetic Resonance Imaging (MRI)-compatible system to enable gating of a scanner to the heartbeat of a foetus for cardiac, umbilical cord flow and other possible imaging applications. We performed radiofrequency safety testing prior to a fetal electrocardiogram (fECG) gated imaging study in pregnant volunteers (n = 3). A compact monitoring device with advanced software capable of reliably detecting both the maternal electrocardiogram (mECG) and fECG simultaneously was modified by the manufacturer (Monica Healthcare, Nottingham, UK) to provide an external TTL trigger signal from the detected fECG which could be used to trigger a standard 1.5 T MR (GE Healthcare, Milwaukee, WI, USA) gating system with suitable attenuation. The MR scanner was tested by triggering rapidly during image acquisition at a typical fetal heart rate (123 beats per minute) using a simulated fECG waveform fed into the gating system. Gated MR images were also acquired from volunteers who were attending for a repeat fetal Central Nervous System (CNS) examination using an additional rapid cardiac imaging sequence triggered from the measured fECG. No adverse safety effects were encountered. This is the first time fECG gating has been used with MRI and opens up a range of new possibilities to study a developing foetus
Inhaled corticosteroids and FEV 1 decline in chronic obstructive pulmonary disease: a systematic review
Abstract: Rate of FEV1 decline in COPD is heterogeneous and the extent to which inhaled corticosteroids (ICS) influence the rate of decline is unclear. The majority of previous reviews have investigated specific ICS and non-ICS inhalers and have consisted of randomised control trials (RCTs), which have specific inclusion and exclusion criteria and short follow up times. We aimed to investigate the association between change in FEV1 and ICS-containing medications in COPD patients over longer follow up times. MEDLINE and EMBASE were searched and literature comparing change in FEV1 in COPD patients taking ICS-containing medications with patients taking non-ICS-containing medications were identified. Titles, abstract, and full texts were screened and information extracted using the PICO checklist. Risk of bias was assessed using the Cochrane Risk of Bias tool and a descriptive synthesis of the literature was carried out due to high heterogeneity of included studies. Seventeen studies met our inclusion criteria. We found that the difference in change in FEV1 in people using ICS and non-ICS containing medications depended on the study follow-up time. Shorter follow-up studies (1 year or less) were more likely to report an increase in FEV1 from baseline in both patients on ICS and in patients on non-ICS-containing medications, with the majority of these studies showing a greater increase in FEV1 in patients on ICS-containing medications. Longer follow-up studies (greater than 1 year) were more likely to report a decline in FEV1 from baseline in patients on ICS and in patients on non-ICS containing medications but rates of FEV1 decline were similar. Further studies are needed to better understand changes in FEV1 when ICS-containing medications are prescribed and to determine whether ICS-containing medications influence rate of decline in FEV1 in the long term. Results from inclusive trials and observational patient cohorts may provide information more generalisable to a population of COPD patients
The mediating effect of immune markers on the association between ambient air pollution and adult-onset asthma
We aim to investigate to what extent a set of immune markers mediate the association between air pollution and adult-onset asthma. We considered long-term exposure to multiple air pollution markers and a panel of 13 immune markers in peripheral blood samples collected from 140 adult cases and 199 controls using a nested-case control design. We tested associations between air pollutants and immune markers and adult-onset asthma using mixed-effects (logistic) regression models, adjusted for confounding variables. In order to evaluate a possible mediating effect of the full set of immune markers, we modelled the relationship between asthma and air pollution with a partial least square path model. We observed a strong positive association of IL-1RA [OR 1.37; 95% CI (1.09, 1.73)] with adult-onset asthma. Univariate models did not yield any association between air pollution and immune markers. However, mediation analyses indicated that 15% of the effect of air pollution on risk of adult-onset asthma was mediated through the immune system when considering all immune markers as a latent variable (path coefficient (β) = 0.09; 95% CI: (-0.02, 0.20)). This effect appeared to be stronger for allergic asthma (22%; β = 0.12; 95% CI: (-0.03, 0.27)) and overweight subjects (27%; β = 0.19; 95% CI: (-0.004, 0.38)). Our results provides supportive evidence for a mediating effect of the immune system in the association between air pollution and adult-onset asthma
Residential greenspace and lung function up to 24Â years of age: The ALSPAC birth cohort.
Background Residing in greener areas is increasingly linked to beneficial health outcomes, but little is known about its effect on respiratory health.
Objective We examined associations between residential greenness and nearby green spaces with lung function up to 24 years in the UK Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort.
Methods Lung function was measured by spirometry at eight, 15 and 24 years of age. Greenness levels within circular buffers (100–1000 m) around the birth, eight-, 15- and 24-year home addresses were calculated using the satellite-derived Normalized Difference Vegetation Index and averaged (lifetime greenness). The presence and proportion of green spaces (urban green spaces, forests and agricultural land) within a 300 m buffer was determined. First, associations between repeated greenness and green space variables and repeated lung function parameters were assessed using generalized estimation equations (N = 7094, 47.9% male). Second, associations between lifetime average greenness and lifetime average proportion of green spaces with lung function at 24-years were assessed using linear regression models (N = 1763, 39.6% male). All models were adjusted for individual and environmental covariates.
Results Using repeated greenspace and lung function data at eight, 15 and 24 years, greenness in a 100 m buffer was associated with higher FEV1 and FVC (11.4 ml [2.6, 20.3] and 12.2 ml [1.8, 22.7], respectively, per interquartile range increase), as was the presence of urban green spaces in a 300 m buffer (20.3 ml [−0.1, 40.7] and 23.1 ml [-0.3, 46.5] for FEV1 and FVC, respectively). These associations were independent of air pollution, urbanicity and socio-economic status. Lifetime average greenness within a 100 m buffer and proportion of agricultural land within a 300 m buffer were associated with better lung function at 24 years but adjusting for asthma attenuated these associations.
Discussion This study provides suggestive evidence that children whose homes are in more vegetated places or are in close proximity of green spaces have better lung function up to 24 years of age
Residential surrounding greenspace and age at menopause: A 20-year European study (ECRHS)
Background: Menopause is associated with a number of adverse health effects and its timing has been reported to be influenced by several lifestyle factors. Whether greenspace exposure is associated with age at menopause has not yet been investigated. Objective: To investigate whether residential surrounding greenspace is associated with age at menopause and thus reproductive aging. Methods: This longitudinal study was based on the 20-year follow-up of 1955 aging women from a large, population-based European cohort (ECRHS). Residential surrounding greenspace was abstracted as the average of satellite-based Normalized Difference Vegetation Index (NDVI) across a circular buffer of 300m around the residential addresses of each participant during the course of the study. We applied mixed effects Cox models with centre as random effect, menopause as the survival object, age as time indicator and residential surrounding greenspace as time-varying predictor. All models were adjusted for smoking habit, body mass index, parity, age at menarche, ever-use of contraception and age at completed full-time education as socio-economic proxy. Results: An increase of one interquartile range of residential surrounding greenspace was associated with a 13% lower risk of being menopausal (Hazard Ratio: 0.87, 95% Confidence Interval: 0.79-0.95). Correspondingly the predicted median age at menopause was 1.4 years older in the highest compared to the lowest NDVI quartile. Results remained stable after additional adjustment for air pollution and traffic related noise amongst others. Conclusions: Living in greener neighbourhoods is associated with older age at menopause and might slow reproductive aging. These are novel findings with broad implications. Further studies are needed to see whether our findings can be replicated in different populations and to explore the potential mechanisms underlying this association
Identification of a new locus at 16q12 associated with time-to-asthma onset
International audienceBackground: Asthma is a heterogeneous disease in which age-of-onset plays an important role.Objective: We sought to identify the genetic variants associated with time-to-asthma onset.Methods: We conducted a large-scale meta-analysis of nine genome-wide association studies of time-to-asthma onset (total of 5,462 asthmatics with a broad range of age-of-asthma onset and 8,424 controls of European ancestry) performed using survival analysis techniques.Results: We detected five regions associated with time-to-asthma onset at genome-wide significant level (P<5x10-8). We evidenced a new locus in 16q12 region (near cylindromatosis turban tumor syndrome gene (CYLD)) and confirmed four asthma risk regions: 2q12 (IL1RL1), 6p21 (HLA-DQA1), 9p24 (IL33) and 17q12-q21 (ZPBP2-GSDMA). Conditional analyses identified two distinct signals at 9p24 (both upstream of IL33) and at 17q12-q21 (near ZPBP2 and within GSDMA). These seven distinct loci explained together 6.0% of the variance in time-to-asthma onset. In addition, we showed that genetic variants at 9p24 and 17q12-q21 were strongly associated with an earlier onset of childhood asthma (P≤0.002) whereas 16q12 SNP was associated with a later asthma onset (P=0.04). A high burden of disease risk alleles at these loci was associated with earlier age-of-asthma onset (4 years versus 9-12 years, P=10-4).Conclusion: The new susceptibility region for time-to-asthma onset at 16q12 harbors variants that correlate with the expression of CYLD and NOD2 (nucleotide-binding oligomerization domain 2), two strong candidates for asthma. This study demonstrates that incorporating the variability of age-of-asthma onset in asthma modeling is a helpful approach in the search for disease susceptibility genes
The Role of Socioeconomic Status in the Association of Lung Function and Air PollutionA Pooled Analysis of Three Adult ESCAPE Cohorts
Ambient air pollution is a leading environmental risk factor and its broad spectrum of adverse health effects includes a decrease in lung function. Socioeconomic status (SES) is known to be associated with both air pollution exposure and respiratory function. This study assesses the role of SES either as confounder or effect modifier of the association between ambient air pollution and lung function. Cross-sectional data from three European multicenter adult cohorts were pooled to assess factors associated with lung function, including annual means of home outdoor NO2. Pre-bronchodilator lung function was measured according to the ATS-criteria. Multiple mixed linear models with random intercepts for study areas were used. Three different factors (education, occupation and neighborhood unemployment rate) were considered to represent SES. NO2 exposure was negatively associated with lung function. Occupation and neighborhood unemployment rates were not associated with lung function. However, the inclusion of the SES-variable education improved the models and the air pollution-lung function associations got slightly stronger. NO2 associations with lung function were not substantially modified by SES-variables. In this multicenter European study we could show that SES plays a role as a confounder in the association of ambient NO2 exposure with lung function
Body silhouettes as a tool to reflect obesity in the past
Life course data on obesity may enrich the quality of epidemiologic studies analysing health consequences of obesity. However, achieving such data may require substantial resources. We investigated the use of body silhouettes in adults as a tool to reflect obesity in the past. We used large population-based samples to analyse to what extent self-reported body silhouettes correlated with the previously measured (9-23 years) body mass index (BMI) from both measured (European Community Respiratory Health Survey, N = 3 041) and self-reported (Respiratory Health In Northern Europe study, N = 3 410) height and weight. We calculated Spearman correlation between BMI and body silhouettes and ROC-curve analyses for identifying obesity (BMI ≥30) at ages 30 and 45 years. Spearman correlations between measured BMI age 30 (±2y) or 45 (±2y) and body silhouettes in women and men were between 0.62-0.66 and correlations for self-reported BMI were between 0.58-0.70. The area under the curve for identification of obesity at age 30 using body silhouettes vs previously measured BMI at age 30 (±2y) was 0.92 (95% CI 0.87, 0.97) and 0.85 (95% CI 0.75, 0.95) in women and men, respectively; for previously self-reported BMI, 0.92 (95% CI 0.88, 0.95) and 0.90 (95% CI 0.85, 0.96). Our study suggests that body silhouettes are a useful epidemiological tool, enabling retrospective differentiation of obesity and non-obesity in adult women and men
Changes in lung function in European adults born between 1884 and 1996 and implications for the diagnosis of lung disease:a cross-sectional analysis of ten population-based studies
Background: During the past century, socioeconomic and scientific advances have resulted in changes in the health and physique of European populations. Accompanying improvements in lung function, if unrecognised, could result in the misclassification of lung function measurements and misdiagnosis of lung diseases. We therefore investigated changes in population lung function with birth year across the past century, accounting for increasing population height, and examined how such changes might influence the interpretation of lung function measurements.
Methods: In our analyses of cross-sectional data from ten European population-based studies, we included individuals aged 20-94 years who were born between 1884 and 1996, regardless of previous respiratory diagnoses or symptoms. FEV1, forced vital capacity (FVC), height, weight, and smoking behaviour were measured between 1965 and 2016. We used meta-regression to investigate how FEV1 and FVC (adjusting for age, study, height, sex, smoking status, smoking pack-years, and weight) and the FEV1/FVC ratio (adjusting for age, study, sex, and smoking status) changed with birth year. Using estimates from these models, we graphically explored how mean lung function values would be expected to progressively deviate from predicted values. To substantiate our findings, we used linear regression to investigate how the FEV1 and FVC values predicted by 32 reference equations published between 1961 and 2015 changed with estimated birth year.
Findings: Across the ten included studies, we included 243 465 European participants (mean age 51·4 years, 95% CI 51·4-51·5) in our analysis, of whom 136 275 (56·0%) were female and 107 190 (44·0%) were male. After full adjustment, FEV1 increased by 4·8 mL/birth year (95% CI 2·6-7·0; p<0·0001) and FVC increased by 8·8 mL/birth year (5·7-12·0; p<0·0001). Birth year-related increases in the FEV1 and FVC values predicted by published reference equations corroborated these findings. This height-independent increase in FEV1 and FVC across the last century will have caused mean population values to progressively exceed previously predicted values. However, the population mean adjusted FEV1/FVC ratio decreased by 0·11 per 100 birth years (95% CI 0·09-0·14; p<0·0001).
Interpretation: If current diagnostic criteria remain unchanged, the identified shifts in European values will allow the easier fulfilment of diagnostic criteria for lung diseases such as chronic obstructive pulmonary disease, but the systematic underestimation of lung disease severity.
Funding: The European Respiratory Society, AstraZeneca, Chiesi Farmaceutici, GlaxoSmithKline, Menarini, and Sanofi-Genzyme
- …