1,213 research outputs found

    Neutral-current neutrino reactions in the supernova environment

    Get PDF
    We study the neutral-current neutrino scattering for four nuclei in the iron region. We evaluate the cross sections for the relevant temperatures during the supernova core collapse and derive Gamow-Teller distributions from large-scale shell-model calculations. We show that the thermal population of the excited states significantly enhances the cross sections at low neutrino energies. Calculations of the outgoing neutrino spectra indicate the prospect of neutrino upscattering at finite temperatures. Both results are particularly notable in even-even nuclei.Comment: 14 pages, 4 figures, accepted in Phys. Lett. B

    On Blowup for time-dependent generalized Hartree-Fock equations

    Full text link
    We prove finite-time blowup for spherically symmetric and negative energy solutions of Hartree-Fock and Hartree-Fock-Bogoliubov type equations, which describe the evolution of attractive fermionic systems (e. g. white dwarfs). Our main results are twofold: First, we extend the recent blowup result of [Hainzl and Schlein, Comm. Math. Phys. \textbf{287} (2009), 705--714] to Hartree-Fock equations with infinite rank solutions and a general class of Newtonian type interactions. Second, we show the existence of finite-time blowup for spherically symmetric solutions of a Hartree-Fock-Bogoliubov model, where an angular momentum cutoff is introduced. We also explain the key difficulties encountered in the full Hartree-Fock-Bogoliubov theory.Comment: 24 page

    Decline and Fall at the White House

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67262/2/10.1177_009365027700400103.pd

    On the temperature dependence of the symmetry energy

    Get PDF
    We perform large-scale shell model Monte Carlo (SMMC) calculations for many nuclei in the mass range A=56-65 in the complete pfg_{9/2}d_{5/2} model space using an effective quadrupole-quadrupole+pairing residual interaction. Our calculations are performed at finite temperatures between T=0.33-2 MeV. Our main focus is the temperature dependence of the symmetry energy which we determine from the energy differences between various isobaric pairs with the same pairing structure and at different temperatures. Our SMMC studies are consistent with an increase of the symmetry energy with temperature. We also investigate possible consequences for core-collapse supernovae events

    The crime drop and the security hypothesis

    Get PDF
    Major crime drops were experienced in the United States and most other industrialised countries for a decade from the early to mid-1990s. Yet there is little agreement over explanation or lessons for policy. Here it is proposed that change in the quantity and quality of security was a key driver of the crime drop. From evidence relating to vehicle theft in two countries it is concluded that electronic immobilisers and central locking were particularly effective. It is suggested that reduced car theft may have induced drops in other crime including violence. From this platform a broader security hypothesis, linked to routine activity and opportunity theory, is outlined

    Complexities of atomic structure at CdO/MgO and CdO/Al2O3 interfaces

    Get PDF
    We report the interface structures of CdO thin films on (001)-MgO and (0001)-Al2O3 substrates. Using aberration corrected scanning transmission electron microscopy, we show that epitaxial growth of (001)-CdO∥(001)-MgO occurs with a lattice misfit greater than 10%. A high density of interface misfit dislocations is found to form. In combination with molecular dynamics simulations, we show that dislocation strain fields form and overlap in very thin heterostructures of CdO and MgO (<3 nm). On the c-Al2O3 substrate, we find that CdO grows with a surface normal of [025]. We show that three rotation variants form due to the symmetry of the sapphire surface. These results contribute insights into the epitaxial growth of these rock-salt oxides

    Carreau fluid in a wall driven corner flow

    Get PDF
    Taylor’s classical paint scraping problem provides a framework for analyzing wall-driven corner flow induced by the movement of an oblique plane with a fixed velocity U. A study of the dynamics of the inertialess limit of a Carreau fluid in such a system is presented. New perturbation results are obtained both close to, and far from, the corner. When the distance from the corner r is much larger than UΓ , where Γ is the relaxation time, a loss of uniformity arises in the solution near the region, where the shear rate becomes zero due to the presence of the two walls. We derive a new boundary layer equation and find two regions of widths r−nr−n and r−2,r−2, where r is the distance from the corner and n is the power-law index, where a change in behavior occurs. The shear rate is found to be proportional to the perpendicular distance from the line of zero shear. The point of zero shear moves in the layer of size r−2r−2. We also find that Carreau effects in the far-field are important for corner angles less than 2.2 rad

    New methodology for describing the equilibrium beach profile applied ti teh Valencia's beachs

    Get PDF
    [EN] Nuevo metodo de determinación de la profundidad de cierre del prfil de playa y su aplicación para ajustar el volumen de arenas de aportación en alimentaciones artificialesAragones, L.; Serra Peris, JC.; Villacampa, Y.; Saval, JM.; Tinoco, H. (2016). New methodology for describing the equilibrium beach profile applied ti teh Valencia's beachs. Geomorphology. 259:1-11. doi:10.1016/j.geomorph.2015.06.049S11125
    corecore