19 research outputs found
Experimental determination of superconducting parameters for the intermetallic perovskite superconductor ${\text {MgCNi}}_3
We have measured upper-critical-field , specific heat C, and
tunneling spectra of the intermetallic perovskite superconductor MgCNi
with a superconducting transition temperature K. Based
on these measurements and relevant theoretical relations, we have evaluated
various superconducting parameters for this material, including the
thermodynamic critical field (0), coherence length (0),
penetration depth (0), lower-critical-field (0), and
Ginsberg-Landau parameter (0). From the specific heat, we obtain the
Debye temperature 280 K. We find a jump of
=2.3 at (where is the
normal state electronic specific coefficient), which is much larger than the
weak coupling BCS value of 1.43. Our tunneling measurements revealed a gap
feature in the tunneling spectra at with 4.6, again larger than the weak-coupling value
of 3.53. Both findings indicate that MgCNi is a strong-coupling
superconductor. In addition, we observed a pronounced zero-bias conductance
peak (ZBCP) in the tunneling spectra.
We discuss the possible physical origins of the observed ZBCP, especially in
the context of the pairing symmetry of the material.Comment: 5 pages, 4 figure