106 research outputs found
Atrial natriuretic factor
The discovery of the first well-defined natriuretic hormone, the Atrial Natriuretic Factor (ANF), has prompted research on its impact on volume regulation in health and disease. The natriuretic, diuretic, and smooth muscle-relaxing properties suggest an important role of this novel hormone in pathophysiological states with sodium or volume retention, such as congestive heart failure or cirrhosis of the liver. Investigations on the implications of ANF in liver disease have been performed for little more than 1 year, and results are still controversial in many respects. At present, it seems very likely that there is no absolute deficiency of plasma ANF in patients with cirrhosis. Moreover, elevated plasma levels in cirrhotics with ascites have been reported by several groups. However, as yet, a molecular characterization of this increased immunoreactivity is still lacking. There is disagreement on the reduced release of and renal response to ANF in subgroups of cirrhotics; however, stimulus-response-coupling might be impaired. Further studies are needed to elucidate the pathophysiological implications and therapeutical potential of ANF in patients with chronic liver disease
Influence of dietary salts on the cardiovascular effects of low-dose combination of ramipril and felodipine in spontaneously hypertensive rats
1. In spontaneously hypertensive rat (SHR) we examined over a 4-week period the influence of control low sodium diet, common salt-enriched diet (sodium chloride 6% of the dry weight of the chow) and a novel mineral salt-enriched diet (potassium-, magnesium-, and l-lysine-enriched mineral salt added at a 75% higher level of 10.5% to produce the same sodium chloride concentration of 6%) on the cardiovascular effects produced by a low-dose combination of an angiotensin converting enzyme inhibitor ramipril (0.25 mg kg(−1) day(−1) in the food) and a calcium channel blocker felodipine (0.4 mg kg(−1) day(−1) subcutaneously via an osmotic minipump). 2. Common salt, but not the mineral salt, accelerated the development of hypertension and induced left ventricular and renal hypertrophy in SHR. Neither common salt nor mineral salt significantly affected heart rate. 3. The combination of ramipril and felodipine decreased systolic blood pressure and prevented the development of left ventricular hypertrophy effectively during the common salt diet without any significant effect on the heart rate. The cardiovascular effects of the drug combination were improved by the low sodium diet or by replacement of high common salt in the diet by mineral salt. 4. Responses of endothelium-intact mesenteric arterial rings in vitro were examined at the end of the four-week study. The combination of ramipril and felodipine markedly improved the endothelium-dependent vascular relaxation responses to acetylcholine and enhanced the endothelium-independent vascular relaxation responses to sodium nitroprusside in SHR on control and common salt diets. Replacement of common salt in the diet by mineral salt improved the endothelium-dependent vascular relaxation responses to acetylcholine. The drug combination attenuated the α-adrenoceptor-mediated vascular contractile responses to noradrenaline during the common salt diet. 5. Ramipril and felodipine in combination increased plasma renin activity by 1.9–3.2 fold without affecting serum aldosterone levels. 6. Our findings suggest that the cardiovascular effect of the low-dose combination of ramipril and felodipine was maintained during high salt intake. However, salt restriction or replacement of common salt in the diet by the potassium- and magnesium-enriched mineral salt improved the cardiovascular effects of the drug combination. In the face of a high intake of sodium, a part of the beneficial cardiovascular effects of the drug combination is apparently mediated by improved endothelium-dependent and endothelium-independent vascular relaxation responses and attenuated α-adrenoceptor-mediated vascular contractile responses
- …