64 research outputs found

    Isotope Analysis Reveals Foraging Area Dichotomy for Atlantic Leatherback Turtles

    Get PDF
    Background: The leatherback turtle (Dermochelys coriacea) has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI). Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. Methodology/Principal Findings: Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal) and foraging latitude (North Atlantic vs. West African coasts, respectively). Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. Conclusions/Significance: Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by commercial fisheries. Our results also emphasize the use of eggs, a less-invasive sampling material than blood, to assess isotopic data and feeding habits for adult female leatherbacks

    The Oldest Case of Decapitation in the New World (Lapa do Santo, East-Central Brazil)

    Get PDF
    We present here evidence for an early Holocene case of decapitation in the New World (Burial 26), found in the rock shelter of Lapa do Santo in 2007. Lapa do Santo is an archaeological site located in the Lagoa Santa karst in east-central Brazil with evidence of human occupation dating as far back as 11.7-12.7 cal kyBP (95.4% interval). An ultra-filtered AMS age determination on a fragment of the sphenoid provided an age range of 9.1-9.4 cal kyBP (95.4% interval) for Burial 26. The interment was composed of an articulated cranium, mandible and first six cervical vertebrae. Cut marks with a v-shaped profile were observed in the mandible and sixth cervical vertebra. The right hand was amputated and laid over the left side of the face with distal phalanges pointing to the chin and the left hand was amputated and laid over the right side of the face with distal phalanges pointing to the forehead. Strontium analysis comparing Burial 26's isotopic signature to other specimens from Lapa do Santo suggests this was a local member of the group. Therefore, we suggest a ritualized decapitation instead of trophy-taking, testifying for the sophistication of mortuary rituals among hunter-gatherers in the Americas during the early Archaic period. In the apparent absence of wealth goods or elaborated architecture, Lapa do Santo's inhabitants seemed to use the human body to express their cosmological principles regarding death

    Assessing human diet and movement in the Tongan maritime chiefdom using isotopic analyses.

    Get PDF
    The rise of stratified societies fundamentally influences the interactions between status, movement, and food. Using isotopic analyses, we assess differences in diet and mobility of individuals excavated from two burial mounds located at the `Atele burial site on Tongatapu, the main island of the Kingdom of Tonga (c. 500 - 150 BP). The first burial mound (To-At-1) was classified by some archaeologists as a commoner's mound while the second burial mound (To-At-2) was possibly used for interment of the chiefly class. In this study, stable isotope analyses of diet (δ13C, δ15N, and δ34S; n = 41) are used to asses paleodiet and 87Sr/86Sr ratios (n = 30) are analyzed to investigate individual mobility to test whether sex and social status affected these aspects of life. Our results show significant differences in diet between burial mounds and sexes. Those interred in To-At-2 displayed lower δ13C values, indicating they ate relatively more terrestrial plants (likely starchy vegetable staples) compared with To-At-1 individuals. Females displayed significantly lower δ15N values compared with males within the entire assemblage. No differences in δ34S values were observed between sexes or burial mound but it is possible that sea spray or volcanism may have affected these values. One individual displayed the strontium isotopic composition representative of a nonlocal immigrant (outside 2SD of the mean). This suggests the hegemonic control over interisland travel, may have prevented long-term access to the island by non-Tongans exemplifying the political and spiritual importance of the island of Tongatapu in the maritime chiefdom

    Relationship Between the Oxygen Isotope Ratios of Terrestrial Plant Cellulose, Carbon Dioxide, and Water

    No full text
    The ratios of oxygen-18 to oxygen-16 (^(18)O/^(16)O) of cellulose purified from two sets of wheat plants grown under conditions similar in all respects except for a large difference in the^(18)O/^(16)O ratios of the carbon dioxide supplied to them differ by only a small amount. The difference in the ^(18)O/^(16)O ratios of the cellulose is similar to that observed for the ^(18)O/^(16)O ratios of the water present in the plants. These results indicate that the oxygen derived from carbon dioxide undergoes complete exchange with the oxygen of the water in the plant during the synthesis of cellulose and that the ^(18)O/^(16)O ratio of the water inside the plant is the primary influence on the ^(18)O/^(16)O ratio of cellulose in terrestrial plants

    Determination of the concentration and stable isotopic composition of oxygen in organic matter containing carbon, hydrogen, oxygen, nitrogen, and sulfur

    No full text
    A method for the quantitative production of carbon dioxide from oxygen in organic matter consisting of carbon, hydrogen, oxygen, nitrogen, and sulfur has been developed. Manometric and mass spectrometric analysis of the CO_2 permit direct determination of the concentration and isotopic composition of oxygen in CHONS compounds with accuracy comparable to that previously achievable for CHO and CHON compounds. Samples containing as little as 187 µmol of oxygen with S/O ratios as high as 0.16 have been analyzed by using this method

    Mechanism of carbon isotope fractionation associated with lipid synthesis

    No full text
    The low carbon-13/carbon-12 ratio of lipids is shown to result from isotopic fractionation during the oxidation of pyruvate to acetyl coenzyme A. In vitro analysis of the kinetic isotope effects of this reaction indicates that there will be a large, temperature-dependent difference in the carbon-13/carbon-12 ratio between the methyl and carbonyl carbon atoms of acetyl coenzyme A and between those carbon atoms of lipid components which derive from them

    Carbon Isotopic Evidence for Different Feeding Patterns in Two Hyrax Species Occupying the Same Habitat

    No full text
    The carbon-13/carbon-12 ratios of the carbonate and collagen fractions of bone of the sympatric hyrax species Procavia johnstoni and Heterohyrax brucei indicate that the former obtains most of its diet by grazing while the latter is primarily a browser. The carbon-13/carbon-12 ratios of these fractions in fossil bone will record information about diet if they have not been altered during diagenesi

    Influence of diet on the distribution of carbon isotopes in animals

    No full text
    The influence of diet on the distribution of carbon isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant carbon isotopic composition. The isotopic composition of the whole body of an animal reflects the isotopic composition of its diet, but the animal is on average enriched in δ^(13)C by about 1‰ relative to the diet. In three of the four cases examined, the ^(13)C enrichment of the whole body relative to the diet is balanced by a ^(13)C depletion of the respired CO_2. The isotopic relationships between the whole bodies of animals and their diets are similar for different species raised on the same diet and for the same species raised on different diets. However, the δ^(13)C values of whole bodies of individuals of a species raised on the same diet may differ by up to 2‰. The relationship between the ^(13)C/^(12)C ratio of a tissue and the ^(13)C/^(12)C ratio of the diet depends both on the type of tissue and on the nature of the diet. Many of the isotopic relationships among the major biochemical fractions, namely the lipid, carbohydrate and protein fractions, are qualitatively preserved as diet carbon is incorporated into the animal. However, the difference between the δ^(13)C values of a biochemical fraction in an animal and in its diet may be as large as 3‰. The δ^(13)C values of the biochemical components collagen, chitin and the insoluble organic fraction of shells, all of which are often preserved in fossil material, are related to the isotopic composition of the diet. These results indicate that it will be possible to perform dietary analysis based on the determination of the ^(13)C/^(12)C ratio of animal carbon. Analysis of the total animal carbon will in most cases provide a better measure of diet than the analysis of individual tissues, biochemical fractions, or biochemical components. The limits of accuracy of this method will generally restrict its application to situations in which the diet is derived from sources with relatively large differences in their δ^(13)C values, such as terrestrial vs aquatic organisms or C_3 vs C_4 plants. The method should be applicable to fossil as well as to living material
    corecore