3,621 research outputs found

    Semiclassical thermodynamics of scalar fields

    Get PDF
    We present a systematic semiclassical procedure to compute the partition function for scalar field theories at finite temperature. The central objects in our scheme are the solutions of the classical equations of motion in imaginary time, with spatially independent boundary conditions. Field fluctuations -- both field deviations around these classical solutions, and fluctuations of the boundary value of the fields -- are resummed in a Gaussian approximation. In our final expression for the partition function, this resummation is reduced to solving certain ordinary differential equations. Moreover, we show that it is renormalizable with the usual 1-loop counterterms.Comment: 24 pages, 5 postscript figure

    Determination of the Rate Coefficients of the SO2 plus O plus M yields SO3 plus M Reaction

    Get PDF
    Rate coefficients of the title reaction R(sub 31) (SO2 +O+M yields SO3 +M) and R(sub 56) (SO2 + HO2 yields SO3 +OH), important in the conversion of S(IV) to S(VI),were obtained at T =970-1150 K and rho (sub ave) = 16.2 micro mol/cubic cm behind reflected shock waves by a perturbation method. Shock-heated H2/ O2/Ar mixtures were perturbed by adding small amounts of SO2 (1%, 2%, and 3%) and the OH temporal profiles were then measured using laser absorption spectroscopy. Reaction rate coefficients were elucidated by matching the characteristic reaction times acquired from the individual experimental absorption profiles via simultaneous optimization of k(sub 31) and k(sub 56) values in the reaction modeling (for satisfactory matches to the observed characteristic times, it was necessary to take into account R(sub 56)). In the experimental conditions of this study, R(sub 31) is in the low-pressure limit. The rate coefficient expressions fitted using the combined data of this study and the previous experimental results are k(sub 31,0)/[Ar] = 2.9 10(exp 35) T(exp ?6.0) exp(?4780 K/T ) + 6.1 10(exp 24) T(exp ?3.0) exp(?1980 K/T ) cm(sup 6) mol(exp ?2)/ s at T = 300-2500 K; k(sub 56) = 1.36 10(exp 11) exp(?3420 K/T ) cm(exp 3)/mol/s at T = 970-1150 K. Computer simulations of typical aircraft engine environments, using the reaction mechanism with the above k(sub 31,0) and k(sub 56) expressions, gave the maximum S(IV) to S(VI) conversion yield of ca. 3.5% and 2.5% for the constant density and constant pressure flow condition, respectively. Moreover, maximum conversions occur at rather higher temperatures (?1200 K) than that where the maximum k(sub 31,0) value is located (approximately 800 K). This is because the conversion yield is dependent upon not only the k(sup 31,0) and k(sup 56) values (production flux) but also the availability of H, O, and HO2 in the system (consumption flux)

    Environmental pollutants in blood donors: The multicentre Norwegian donor study

    Get PDF
    Objectives - The aim of this study was to measure blood concentrations of environmental pollutants in Norwegian donors and evaluate the risk of pollutant exposure through blood transfusions. Background - Transfused blood may be a potential source of exposure to heavy metals and organic pollutants and presents a risk to vulnerable patient groups such as premature infants. Methods/Materials - Donors were randomly recruited from three Norwegian blood banks: in Bergen, TromsĂž and Kirkenes. Selected heavy metals were measured in whole blood using inductively coupled plasma mass spectrometry (ICP‐MS), and perfluoroalkyl substances (PFAS) were measured in serum by ultrahigh‐pressure liquid chromatography coupled with a triple‐quadrupole mass spectrometer (UHPLC‐MS/MS). Results - Almost 18% of blood donors had lead concentrations over the limit suggested for transfusions in premature infants (0.09 Όmol/L). About 11% of all donors had mercury concentrations over the suggested limit of 23.7 nmol/L. Cadmium was higher than the limit, 16 nmol/L, in 4% of donors. Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) concentrations were over the suggested limit of 0.91 ng/mL in 68% and 100% of the donors, respectively. PFAS concentrations and heavy metal concentrations increased with donor's age. Conclusion - A considerable percentage of donors had lead, PFOS and PFOA concentrations over the suggested limits. In addition, at each study site, there were donors with high mercury and cadmium concentrations. Selecting young donors for transfusions or measurements of pollutants in donor blood may be a feasible approach to avoid exposure through blood transfusions to vulnerable groups of patients such as premature infants

    Correlated Binomial Models and Correlation Structures

    Full text link
    We discuss a general method to construct correlated binomial distributions by imposing several consistent relations on the joint probability function. We obtain self-consistency relations for the conditional correlations and conditional probabilities. The beta-binomial distribution is derived by a strong symmetric assumption on the conditional correlations. Our derivation clarifies the 'correlation' structure of the beta-binomial distribution. It is also possible to study the correlation structures of other probability distributions of exchangeable (homogeneous) correlated Bernoulli random variables. We study some distribution functions and discuss their behaviors in terms of their correlation structures.Comment: 12 pages, 7 figure

    Does gravitational wave propagate in the five dimensional space-time with Kaluza-Klein monopole?

    Get PDF
    The behavior of small perturbations around the Kaluza-Klein monopole in the five dimensional space-time is investigated. The fact that the odd parity gravitational wave does not propagate in the five dimensional space-time with Kaluza-Klein monopole is found provided that the gravitational wave is constant in the fifth direction.Comment: 10 @ages, LATE

    Biomechanical Analysis of Treadmill Locomotion on the International Space Station

    Get PDF
    Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to Spaceflight (Gap B15), Risk of Impaired Performance Due to Reduced Muscle Mass, Strength, and Endurance (Gaps M3, M4, M6, Ml, M8, M9) and Risk of reduced Physical Performance Capabilities Due to Reduce Aerobic Capacity (Gaps M7, M8, M9)

    Electron-induced proton knockout from neutron rich nuclei

    Full text link
    We study the evolution of the \eep cross section on nuclei with increasing asymmetry between the number of neutrons and protons. The calculations are done within the framework of the nonrelativistic and relativistic distorted-wave impulse approximation. In the nonrelativistic model phenomenological Woods-Saxon and Hartree-Fock wave functions are used for the proton bound-state wave functions, in the relativistic model the wave functions are solutions of Dirac-Hartree equations. The models are first tested against experimental data on 40^{40}Ca and 48^{48}Ca nuclei, and then they are applied to a set of spherical calcium isotopes.Comment: 5 pages, 2 figures. contribution to the XIX International School on Nuclear Physics, Neutron Physics and Applications, Varna (Bulgaria) September 19-25, 201

    Cosmological dynamics of fourth order gravity: A compact view

    Full text link
    We construct a compact phase space for flat FLRW spacetimes with standard matter described by a perfect fluid with a barotropic equation of state for general f(R) theories of gravity, subject to certain conditions on the function f. We then use this framework to study the behaviour of the phase space of Universes with a non-negative Ricci scalar in R + {\alpha}R^n gravity. We find a number of interesting cosmological evolutions which include the possibility of an initial unstable power-law inflationary point, followed by a curvature fluid dominated phase mimicking standard radiation, then passing through a standard matter (CDM) era and ultimately evolving asymptotically towards a de-Sitter-like late-time accelerated phase.Comment: 8 pages, 3 figures, revtex4-

    N=2 Super-Higgs, N=1 Poincare' Vacua and Quaternionic Geometry

    Get PDF
    In the context of N=2 supergravity we explain the occurrence of partial super-Higgs with vanishing vacuum energy and moduli stabilization in a model suggested by superstring compactifications on type IIB orientifolds with 3-form fluxes. The gauging of axion symmetries of the quaternionic manifold, together with the use of degenerate symplectic sections for special geometry, are the essential ingredients of the construction.Comment: 18 page

    Path integral quantization of electrodynamics in dielectric media

    Full text link
    In the present paper we study the Faddeev-Popov path integral quantization of electrodynamics in an inhomogenious dielectric medium. We quantize all polarizations of the photons and introduce the corresponding ghost fields. Using the heat kernel technique, we express the heat kernel coefficients in terms of the dielectricity Ï”(x)\epsilon (x) and calculate the ultra violet divergent terms in the effective action. No cancellation between ghosts and "non-physical" degrees of freedom of the photon is observed.Comment: 10 pages, Latex, submitted to J.Phys.A, revised (a misprint in the bibliography
    • 

    corecore