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1. Introduction

Finite-temperature field theory [1] is the natural framework for the study of phase transi-

tions, and of the thermodynamic properties of equilibrium states. Applications range from

the investigation of the phase structure of the strong and electroweak interactions, and

the related applications to the early universe, to the low-energy effective field theories in

particle physics and condensed matter systems.

However, finite-temperature field theories often face a major difficulty: the plain per-

turbation expansion [5 – 8] is ill-defined due to the presence of infrared divergences in the

bosonic sector, and often gives meaningless results. In the case of hot QCD, for instance,

one can say that the domain of validity of the naive weak-coupling expansion is the empty

set [2]. This challenge stimulated the development of resummation techniques that reorga-

nize the perturbative series, and resum certain classes of diagrams, thereby improving the

perturbative expansion (see [3, 4] for recent reviews). Some of these techniques amount
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to using an effective theory in order to separate the scales T , gT , and g2T [9 – 14]. Oth-

ers use modified quasi-particles as the starting point of the perturbative expansion [15],

leading to a significant improvement of the convergence of the expansion when the mass of

these quasi-particles is properly chosen (one can also mention refs. [27, 28], where a simple

phenomenological model of massive quasi-particles was successfully used in order to re-

produce the pressure of the quark-gluon plasma obtained in lattice simulations). In other

approaches that aim at maintaining thermodynamical consistency, one reorganizes the

perturbative expansion of the thermodynamical potential around two-particle irreducible

skeleton diagrams [16 – 21]. Finally, some of these techniques are based on a systematic use

of the Hard Thermal Loop effective action [22 – 26], i.e., on the assumption that the HTLs

provide a good description of the quasi-particles in the plasma, and of their interactions.

A somewhat different approach, which can also be interpreted as a resummation of an

infinite set of perturbative diagrams, is provided by the semiclassical approximation [29,

30]. Since the partition function of a given system can be cast in the form of a path

integral whose weight is the exponential of minus the Euclidean action, an expansion around

Euclidean classical solutions is quite natural. This program has been carried out in the

case of one-dimensional quantum statistical mechanics for particles in a single-well potential

in [31], and also for double wells [32]. From the mere knowledge of the classical Euclidean

solutions of the equation of motion, the full semiclassical series for the partition function

was constructed.1 Later, these results were generalized to the case of a particle in a central

potential in an arbitrary number of dimensions [35]. In both cases, excellent results were

obtained, for instance, for the ground state energy and the specific heat, in the case of the

quartic potential.

In this paper we develop a similar semiclassical procedure to compute the partition

function for thermal scalar field theories with a single-well potential. We expand around

Euclidean classical fields, whose value on the boundaries of the time interval are taken to

be independent of space. These solutions are assumed to be known to all orders in the in-

teraction potential (either analytically or numerically). Then, we incorporate fluctuations

around these classical trajectories, as well as space-dependent fluctuations of the boundary

value of the classical fields. All these fluctuations are kept only in a Gaussian approxima-

tion, although it is in principle possible to go systematically beyond this approximation.

We also provide a diagrammatic interpretation of our results, connecting our formalism

to the ordinary perturbative expansion, and identifying the classes of diagrams that are

resummed in our approach. The implementation of the renormalization procedure in this

semiclassical treatment is discussed in detail at the end.

Since the procedure we propose is infrared finite, we believe it represents an interesting

alternative to other rearrangements of perturbation theory at finite temperature. In this

paper, we present the general semiclassical framework for an arbitrary potential. We leave

the application to the case of a scalar theory with quartic self-interactions, and comparisons

1The equivalent problem in quantum mechanics at zero temperature was previously studied by DeWitt-

Morette [33] for arbitrary potentials, and by Mizrahi [34] for the single-well quartic anharmonic oscillator,

using similar techniques. For a more complete list of references on the semiclassical series in quantum

mechanics, see [31]
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with other methods to a following publication [38].

The paper is organized as follows:

In section 2, we discuss the computation of the partition function, starting from its

expression in terms of a functional integral, within the semiclassical approximation. Al-

though the main result is, of course, well known, we focus our discussion on the role played

by the boundary conditions in Euclidean time at finite temperature. We also recall the dia-

grammatic interpretation of the integration over quadratic fluctuations around the classical

field.

In section 3, we present a systematic procedure to incorporate effects from fluctuations

of the boundary value of the field in the computation of the partition function. We explain

how one can perform an expansion in those fluctuations in a consistent way, provided that

one knows the classical solutions for the problem with constant boundary conditions. We

derive formulas that incorporate the effects of these fluctuations up to quadratic order.

These formulas depend only on the classical field itself, and on a basis of solutions for the

equation of motion for small fluctuations around the classical field.

In section 4, we expand the classical action to second order in the boundary fluctua-

tions, and discuss diagrammatically the meaning of this expansion in terms of the boundary

value of the field. This leads to our final expression for the partition function in terms of

quantities that can be straightforwardly obtained in explicit form for a given potential

once one knows the classical solution mentioned previously (at least numerically). This

expression, however, still needs to be renormalized.

The renormalization procedure, which resembles the usual perturbative procedure, is

discussed in section 5. There, we show how to obtain a finite expression for the parti-

tion function through the introduction of only two counterterms in the action, plus the

subtraction of the zero point energy.

We present our conclusions and outlook in section 6. Finally, in appendix A, we

illustrate the procedure in the case of the free theory and in appendix B we demonstrate a

useful relation. As mentioned above, the non-trivial example of the quartic potential will

be addressed in detail in another publication.

2. Small fluctuations around a classical solution

We want to calculate the partition function Z ≡ Tre−βH for a system of interacting scalar

fields, making use of a semiclassical approximation. Our starting point is the expression of

Z in terms of path integrals:

Z =

∫

[Dϕ(x)]

∫

φ(−β/2,x)=φ(β/2,x)=ϕ(x)

[Dφ(τ,x)] e−S
E

[φ] , (2.1)

where S
E
[φ] is the Euclidean action of the field:

SE [φ] =

+β/2
∫

−β/2

dτd3x

[

1

2
∂µφ∂µφ +

1

2
m2φ2 + U(φ)

]

. (2.2)
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Assume, for the time being, that we know the solution φc(τ,x) of the classical equation of

motion, that takes the value ϕ(x) on the boundaries of the time interval:

(¤
E

+ m2)φc(τ,x) + U ′ (φc(τ,x)) = 0 ,

φc(−β/2,x) = φc(β/2,x) = ϕ(x) , (2.3)

where we denote by ¤
E
≡ −(∂2

τ + ∇
2) the Euclidean D’Alembertian operator.

A classical solution is a (local) minimum of SE. Next, in the functional integration

over φ(τ,x) in eq. (2.1), one assumes that the integral is dominated by field configurations

in the vicinity of that classical solution, i.e., by small fluctuations around this classical

solution. In order to evaluate the integral in this approximation, one writes:

φ(τ,x) ≡ φc(τ,x) + η(τ,x) , (2.4)

and expands the Euclidean action to second order in the fluctuation η(τ,x):

S
E
[φ] = S

E
[φc] +

1

2

∫

(d4x1)E
(d4x2)E

δ2S
E
[φ]

δφ(x1)δφ(x2)

∣

∣

∣

∣

φ=φc

η(x1)η(x2) + O(η4) . (2.5)

In this equation, we have used the shorthands x ≡ (τ,x) and
∫

(d4x)
E
≡

∫ β/2
−β/2 dτ

∫

d3x.

For the sake of brevity, let us also introduce the following notation:

ηT A[φc]η ≡

∫

(d4x1)E
(d4x2)E

δ2SE [φ]

δφ(x1)δφ(x2)

∣

∣

∣

∣

φ=φc

η(x1)η(x2) , (2.6)

where A[φc] is a symmetric “matrix” that depends on the classical solution φc (with con-

tinuous indices spanning [−β/2, β/2] ×R3).

The Gaussian functional integration over the fluctuation η must be performed with

the constraint that the fluctuation η(τ,x) vanishes at the time boundaries,

∀x , η(−β/2,x) = η(β/2,x) = 0 , (2.7)

because the classical background field already saturates the boundary conditions. Let us

therefore call A∗[φc] the restriction of the operator A[φc] to the subspace of fluctuations η

that obey these boundary conditions. We can write:

Z ≈

∫

[Dϕ(x)] e−S
E

[φc] [det (A∗[φc])]
−1/2 . (2.8)

In order to compute the semiclassical calculation of Z, one must now integrate over the

boundary value of the field, ϕ(x). However, before we pursue this calculation, it is useful

to recall the nature of the diagrams that are contained in the square root of the functional

determinant. It is well known that the Gaussian integration over fluctuations above a given

background field amounts to calculating the one-loop correction to the effective action.

However, for this correspondence to be valid, one must integrate over all the periodic

fields η(x). In our case, the Gaussian integration involves only fields η that vanish on the

time boundaries (see eq. (2.7)), i.e., only a subset of all the periodic fields. Therefore,
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Figure 1: Typical 1-loop diagram included in the integration over fluctuations around the classical

solution in the Gaussian approximation. The lines terminated by a cross denote the classical solution

with a fixed boundary condition ϕ(x). The dashed line can be seen as the propagator around the

classical field, for a fluctuation that vanishes at the time boundaries.

the quantity
[

det (A∗[φc])
]−1/2

is a part of the one-loop effective action, but does not

contain all the terms that would normally enter in the effective action at this order.2 With

this caveat in mind, a typical diagram included in this quantity is displayed in figure 1,

in the case of a field theory with a quartic coupling. It is important to remember that

the propagator represented by the dashed line differs from the complete time ordered

propagator, because it corresponds to a subset of all the periodic modes.

Both the classical action and the determinant in eq. (2.8) depend on the field ϕ(x)

on the boundary, through the dependence of the classical solution φc on the boundary

conditions in eq. (2.3). In fact, the classical solution φc can be represented diagrammatically

as the sum of all the tree diagrams terminated by the boundary field ϕ(x). The easiest way

to see this is to write Green’s formula for the solution of eq. (2.3). Let us first introduce a

Green’s function of the operator ¤
E

+ m2:

[

∂2
τ ′ + ∇

2
x′ − m2

]

G0(τ,x; τ ′,x′) = δ(τ − τ ′)δ(x − x′) . (2.9)

This Green’s function is not unique, but we can postpone its choice for later. Let us

multiply this equation by the classical field φc(τ
′,x′), and integrate over τ ′ and x′. This

gives:

φc(τ,x) =

∫ β/2

−β/2
dτ ′

∫

d3x′ φc(τ
′,x′)

[

∂2
τ ′ + ∇

2
x′ − m2

]

G0(τ,x; τ ′,x′) . (2.10)

Now, multiply the equation of motion for φc(τ
′,x′) by the Green’s function G0(τ,x; τ ′,x′),

integrate over τ ′, and subtract the resulting equation from the previous one. This leads to:

φc(τ,x) =

∫ β/2

−β/2
dτ ′

∫

d3x′ G0(τ,x; τ ′,x′) U ′(φc(τ
′,x′)) (2.11)

+

∫ β/2

−β/2
dτ ′

∫

d3x′ G0(τ,x; τ ′,x′)
[ →

∂2
τ ′ +

→
∇

2
x′ −

←
∂2

τ ′ −
←

∇
2
x′

]

φc(τ
′,x′) ,

2This distinction can also be seen by studying the eigenfunctions of the operator A[φc], on the space of

periodic functions and on the space of functions that vanish at τ = ±β/2 respectively.
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where the arrows on the differential operators on the second line indicate on which side

they act. The second line can be rewritten as a boundary term, by noting that:

A
[ →

∂2
µ −

←
∂2

µ

]

B = ∂µ

{

A
[ →

∂µ −
←
∂µ

]

B

}

. (2.12)

In eq. (2.11), the boundary in the spatial directions does not contribute to the classical

field at the point x because the free propagator decreases fast enough when the spatial

separation increases. Thus, we are left with only a contribution from the boundaries in

time. At this point, since the boundary conditions for φc consist in specifying the value of

the field at τ ′ = ±β/2, while its first time derivative is not constrained, it is very natural

to choose a Green’s function G0 that obeys the following conditions:3

G0(τ,x;−β/2,x′) = G0(τ,x; +β/2,x′) = 0 . (2.13)

With this choice of the propagator, we obtain the following formula for φc(τ,x):

φc(τ,x) =

∫ β/2

−β/2
dτ ′

∫

d3x′ G0(τ,x; τ ′,x′) U ′(φc(τ
′,x′)) (2.14)

−

∫

d3x′ ϕ(x′)
[

∂τ ′G0(τ,x; τ ′,x′)
]τ ′=+β/2

τ ′=−β/2
,

This formula tells us how the classical solution φc depends on the boundary value ϕ(x). If

the first term in the right hand side — involving the derivative U ′ of the potential — were

not there, then the relationship between φc and the boundary value ϕ would be linear.

This only happens in a free theory. When there are interactions, one can solve eq. (2.14)

iteratively in powers of U ′. This expansion can be represented diagrammatically by the sum

of the tree diagrams whose “leaves” are made of the boundary field ϕ(x). An example of

such a diagram is illustrated in figure 2, in the case of a φ4 interaction of the fields. Notice

that, when the boundary field is small,4 this sum of trees can be approximated by the

zeroth order in the expansion in powers of U ′, which is independent of the interactions. On

the other hand, for large values of ϕ, it is important to keep the full sum of tree diagrams

that are summed in φc, because all the terms in the expansion can be equally important.

Therefore, we already see an important feature of our approximation scheme: although the

quantum fluctuations are only included at the 1-loop level, it treats the boundary field to

all orders, allowing a correct treatment even for non-perturbatively large values of ϕ(x).

3It is in general always possible to impose two conditions on a Green’s function of ¤
E

+m2, because the

zero modes of this operator form a linear space of dimension 2. The conditions of eq. (2.13) are explicitly

realized by:

G0(τ, x; τ ′, x′) =

Z

d3k

(2π)2
eik·(x−x′)

(

θ(τ − τ ′)
sinh(ωk(τ − β

2
)) sinh(ωk(τ ′ + β

2
))

ωk sinh(ωkβ)

+ θ(τ ′

− τ )
sinh(ωk(τ ′ − β

2
)) sinh(ωk(τ + β

2
))

ωk sinh(ωkβ)

)

,

where we denote ωk ≡
p

k2 + m2.
4By this, we mean that the interaction term is smaller than the kinetic term in the action. This condition

depends on the particular momentum modes one is interested in.
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=

Figure 2: Diagrammatic expansion of the classical field in terms of the boundary value of the field

(black dots).

3. Expansion in fluctuations of the boundary

3.1 Preliminary discussion

The integration over boundary configurations that remains to be performed in eq. (2.8)

makes the semiclassical approximation for Z rather involved; first, we must solve the partial

differential equation (2.3) for an arbitrary ϕ(x), and this will not be feasible analytically in

general. Even numerically, this is a very complicated task. Besides that, the only functional

integral over ϕ that one is able to perform analytically is a Gaussian integral. In order to

circumvent these problems, we are forced to perform some further approximations.

One can see readily in eqs. (2.3) that the classical equation of motion reduces to an

ordinary differential equation in the case where the field ϕ(x) on the boundary is a constant

ϕ0. In this case, the classical solution φc(τ,x) becomes a function φ0(τ) of the time only:

(−∂2
τ + m2)φ0(τ) + U ′ (φ0(τ)) = 0 ,

φ0(−β/2) = φ0(β/2) = ϕ0 . (3.1)

Such a simplification of the classical equation of motion would make the problem much more

tractable by analytical or numerical methods. This remark suggests that we decompose

the boundary field ϕ(x) into a constant part ϕ0, and a fluctuation ξ(x):

ϕ(x) = ϕ0 + ξ(x) . (3.2)

The solution of the classical equation of motion can therefore be expanded in a similar

manner:

φc(τ,x) = φ0(τ) + φ1(τ,x) + φ2(τ,x) + · · · , (3.3)

where φn is of order n in ξ (there are terms of arbitrarily high order in ξ if the equation

of motion is non linear). Having done this, we can rewrite the path integral over ϕ(x) in

– 7 –
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eq. (2.8) as follows:

Z ≈

+∞
∫

−∞

dϕ0

∫

〈

ξ(x)
〉

=0

[Dξ(x)] e−S
E

[φc] [det (A∗[φc])]
−1/2 . (3.4)

Notice that the integration over ξ(x) must be performed with the constraint that

〈

ξ(x)
〉

≡

∫

d3x ξ(x) = 0 , (3.5)

since the “uniform component” (i.e., the zero mode) of the boundary condition is already

included in ϕ0. An unrestricted integration of ξ(x) would therefore overcount the contri-

bution of this zero mode.

In the following, we are going to assume that the first term φ0(τ) can be determined

with an arbitrary accuracy — it can be determined analytically in certain cases, while in

general it is obtained by solving numerically an ordinary differential equation. Moreover,

the dependence on φ0 will always be treated exactly. Only the terms that are of higher

order in the fluctuation ξ of the boundary field will be treated in some approximate way.

Doing this allows us to preserve the benefits of treating correctly the interaction term when

the boundary field is large, since only the fluctuations of the boundary field are assumed

to be perturbative.

A natural approximation to obtain the dependence on ξ is to do a Gaussian approxi-

mation around ξ = 0. As we shall see shortly, in order to find the classical action SE [φc]

at order two in the fluctuation ξ(x) of the boundary, it is enough to obtain the classical

solution φc at order one in ξ(x).

Moreover, to be consistent with the Gaussian approximation for S
E
[φc], we only need

to evaluate the determinant at lowest order in ξ(x), i.e., at order zero. Indeed, the Gaussian

integration over the fluctuations ξ corresponds to a one-loop correction in the background

φ0. However, as we have seen in the previous section, the functional determinant in eq. (3.4)

is already a one-loop correction. Therefore, keeping the ξ dependence in this determinant

would give higher loop corrections when we integrate over ξ, but only a certain subset of

all the 2-loop corrections would be included. Doing so is not forbidden by any fundamental

principle, but it would arguably make the calculation more complicated; and moreover

this would alter the renormalization of the final result. Indeed, as we shall see later,

by expanding in ξ the functional determinant in eq. (3.4), we will eventually obtain an

expression whose ultraviolet divergences are precisely those of the one-loop effective action.

For these reasons, we are going to evaluate

Z ≈

+∞
∫

−∞

dϕ0 [det (A∗[φ0])]
−1/2

∫

〈

ξ(x)
〉

=0

[Dξ(x)] e−S
E

[φc] . (3.6)

3.2 Correction to φc due to boundary fluctuations

The next step is to find the correction φ1(τ,x) to the classical solution φc. In order to find

the equation obeyed by φ1, simply replace φc by φ0 + φ1 in eq. (2.3). By dropping all the

– 8 –
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terms that are of order higher than unity in φ1 (since they are at least of order two in ξ),

and using the equation obeyed by φ0, we obtain the following (linearized) equation for φ1:

[

(¤
E

+ m2) + U ′′ (φ0(τ))
]

φ1 = 0 , (3.7)

with the boundary condition:

φ1(−β/2,x) = φ1(β/2,x) = ξ(x) . (3.8)

In the following, we also need the Green’s formula for the variation φ1 of the classical field.

The derivation is very similar to the derivation of eq. (2.14), and we shall not reproduce

it here. The main difference compared to eq. (2.14) is that we need a Green’s function for

the operator
(

¤
E

+ m2 + U ′′ (φ0(τ))
)

,

[

∂2
τ ′ + ∇

2
x′ − m2 − U ′′ (φ0(τ

′)
)]

G(τ,x; τ ′,x′) = δ(τ − τ ′)δ(x − x′) , (3.9)

instead of the free propagator G0 that we have introduced earlier. Again, this propagator

must obey the boundary condition

G(τ,x;−β/2,x′) = G(τ,x;β/2,x′) = 0 . (3.10)

In terms of the fluctuation ξ and of the propagator, the first order correction to the classical

solution reads:

φ1(τ,x) =

∫

d3x′ ξ(x′)
[

∂τ ′G(τ,x; τ ′,x′)
]τ ′=+β/2

τ ′=−β/2
. (3.11)

Notice that, since the background field φ0 does not depend on space, the propagator G

depends only on the difference x − x′. Thus, we can get rid of the spatial convolution by

going to Fourier space:

φ1(τ,k
2) = ξ(k)

[

∂τ ′G(τ, τ ′,k2)
]τ ′=+β/2

τ ′=−β/2
, (3.12)

where the propagator in Fourier space is defined by

[

∂2
τ ′ − (k2 + m2) − U ′′ (φ0(τ

′)
)]

G(τ, τ ′,k2) = δ(τ − τ ′) , (3.13)

and

G(τ,−β/2,k2) = G(τ, β/2,k2) = 0 . (3.14)

3.3 Propagator in the background φ0

It is fairly easy to determine the propagator G that obeys eqs. (3.13) and (3.14) in terms

of two linearly independent solutions of the homogeneous linear differential equation:

[

∂2
τ − (m2 + k2) − U ′′ (φ0(τ))

]

η(τ,k2) = 0 . (3.15)

– 9 –
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Let ηa(τ,k
2) and ηb(τ,k

2) be two such independent solutions5 of (3.15). In order to

construct from ηa,b a solution of eqs. (3.13) and (3.14), let us first introduce the following

object:

Ω(τ, τ ′,k2) ≡ ηa(τ,k
2)ηb(τ

′,k2) − ηb(τ,k
2)ηa(τ

′,k2) . (3.17)

It is trivial to check that Ω(τ, τ ′,k2) satisfies eq. (3.15), both with respect to the variable

τ and to the variable τ ′. Let us then consider the following quantity:

H(τ, τ ′,k2) ≡
Ω(β/2, τ,k2)Ω(τ ′,−β/2,k2)

Ω(β/2,−β/2,k2)
if τ > τ ′ ,

H(τ, τ ′,k2) ≡
Ω(β/2, τ ′,k2)Ω(τ,−β/2,k2)

Ω(β/2,−β/2,k2)
if τ < τ ′ . (3.18)

This quantity obeys eq. (3.13) if τ 6= τ ′. Moreover, although H(τ, τ ′,k2) is continuous at

τ = τ ′, its first time derivative is not, and one has:

lim
ǫ→0+

(

∂τ ′H(τ, τ ′,k2)
∣

∣

τ ′=τ+ǫ
− ∂τ ′H(τ, τ ′,k2)

∣

∣

τ ′=τ−ǫ

)

= ηa(τ,k
2)η̇b(τ,k

2) − η̇a(τ,k
2)ηb(τ,k

2) ≡ −W . (3.19)

as can be checked by an explicit calculation. The right hand side of the previous equation

is nothing but the Wronskian W of the pair of solutions ηa,b and is independent of τ in

the case of eq. (3.15). Let us denote by W the value of the Wronskian for the pair of

solutions ηa,b. The discontinuity of ∂τ ′H(τ, τ ′,k2) across τ ′ = τ is therefore equal to W ,

which means that the second time derivative indeed contains a term W δ(τ − τ ′). Finally,

from the obvious property

Ω(τ, τ,k2) = 0 , (3.20)

one easily sees that H(τ, τ ′,k2) satisfies the boundary condition of eq. (3.14). Therefore,

W−1 H(τ, τ ′,k2) is the propagator we are looking for:

G(τ, τ ′,k) = −
Ω(β/2,max(τ, τ ′),k2)Ω(min(τ, τ ′),−β/2,k2)

W Ω(β/2,−β/2,k2)
. (3.21)

In general, the solutions ηa,b will not be found analytically for a non-zero k, and will have

to be found numerically.

3.4 Calculation of the functional determinant

As we have already explained, we need to calculate the determinant that appears in

eq. (3.4), det (A∗[φc]), to order zero in the fluctuation ξ(x) of the boundary, i.e.,

5When k = 0, it is straightforward to verify that:

ηa(τ ;0) = φ̇0(τ ) ,

ηb(τ ;0) = φ̇0(τ )

τ
Z

0

dτ ′

φ̇2
0(τ

′)
. (3.16)

obey (3.15). However, this construction fails when k 6= 0.

– 10 –



J
H
E
P
0
8
(
2
0
0
7
)
0
0
7

det (A∗[φ0]). Integrating by parts the kinetic term, the Euclidean action can be rewrit-

ten as:

S
E
[φ0 + η] ≈ S

E
[φ0] +

∫

(d4x)
E

[

1

2
η¤

E
η +

1

2
m2η2 + U ′′(φ0)η

2

]

. (3.22)

Notice that the integration by parts does not introduce any boundary term here, thanks

to the boundary condition obeyed by η (see eq. (2.7)). Therefore, we have for the operator

A∗ the following expression:

A∗[φ0]τ,x;τ ′,y ≡
δ2S

E

δφ(τ,x)δφ(τ ′,y)

∣

∣

∣

∣

φ=φ0

= δ(τ − τ ′)δ(x − y)
[

¤
E

+ m2 + U ′′ (φ0(τ))
]

. (3.23)

Notice that here we have already written φ0 explicitly as a field that depends only on time

(because we are calculating the determinant only at order zero in the fluctuations of the

boundary). Thus, we can perform a Fourier transform with respect to space, and use k

instead of x. The eigenvalues gi and eigenfunctions ηi of the operator A∗[φ0] are functions

η(τ,x) that obey the following system of equations:6

[

∂2
τ − (m2 + k2) − U ′′ (φ0(τ))

]

ηi(τ,k
2) = giηi(τ,k

2) ,

∀x , ηi(−β/2,k2) = ηi(β/2,k2) = 0 . (3.24)

This equation is of the same type as eq. (3.15), the only difference being that k2 is now

replaced by k2+gi. Therefore, it has two independent solutions that are given by ηa(τ,k
2+

gi) and ηb(τ,k
2 + gi), and its general solution can be written as:

ηi(τ,k
2) = Caηa(τ,k

2 + gi) + Cbηb(τ,k
2 + gi) , (3.25)

where Ca,b are two integration constants. In order to have a non-zero ηi that obeys the

required boundary conditions, we need to have the following property:

ηa(−β/2,k2 + gi)ηb(β/2,k2 + gi) = ηa(β/2,k2 + gi)ηb(−β/2,k2 + gi) . (3.26)

This equation determines the allowed eigenvalues gi. This equation can also be written as:

Ω(β/2,−β/2,k2 + gi) = 0 , (3.27)

where Ω has been introduced in eq. (3.17). The determinant of the operator A∗ is of course

obtained as the product of its eigenvalues:

detA∗[φ0,k
2] =

∏

g|Ω(β/2,−β/2,k2+g)=0

g . (3.28)

(We denote by A∗[φ0,k
2] the restriction of the operator A∗[φ0] to field fluctuations of

Fourier mode k.) If we denote by zn the (possibly complex) zeros of the function

6For many more informations about properties of Hill’s equations and their solutions, the reader may

consult [36].
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Ω(β/2,−β/2; z), then the solutions of Ω(β/2,−β/2,k2+g) = 0 are the numbers g = zn−k2.

Therefore, we can write

detA∗[φ0,k
2] =

∏

n

(zn − k2) , (3.29)

where multiple zeros are repeated as many times as needed in the product. The right

hand side of this equation is an entire function of k2, that obviously vanishes at all the

zn’s. Since Ω(β/2,−β/2,k2) shares the same property, there exists an entire function p(k2)

such that [37]:

det A∗[φ0,k
2] = Ω(β/2,−β/2,k2) ep(k2) . (3.30)

From eq. (3.17) we see that, if we chose the functions ηa and ηb in such a way that their

value at τ = −β/2 is independent of k2, then the limit

lim
k2→∞

|Ω(β/2,−β/2,k2)| e−M
√

k2

(3.31)

is bounded for any M > β. By Hadamard’s theorem [37], we conclude that the function

p(k2) is a constant.7 The constant factor ep must in fact be proportional to the inverse of

the Wronskian of the pair of solutions ηa and ηb that we are using, ep = const/βW , because

the determinant must be independent of this choice (the factor β in the denominator has

been included by hand in order to have a dimensionless determinant). The normalization

constant can be absorbed as an overall multiplicative constant in Z.

Finally, the determinant of A∗[φ0] is obtained by multiplying the previous result for

all k’s, which gives:

det A∗[φ0] = exp V

∫

d3k

(2π)3
ln

(

Ω(β/2,−β/2,k2)

βW

)

. (3.32)

In order to see how the volume V appears in this formula, it is useful to consider first that

the system is in a finite box, and to rewrite the sum over the corresponding discrete Fourier

modes as an integral.

4. Integration over the boundary fluctuations

4.1 Expansion of the classical action

The final step in the analytic part of this calculation is to calculate the functional integral

over the fluctuation ξ(x) of the boundary in eq. (3.4). Before doing this integration, we

must expand the classical action SE [φc] to quadratic order in ξ, using the expansion of

eq. (3.3) for φc. We have:

S
E
[φc] = S

E
[φ0] + δ(1)S

E
+ δ(2)S

E
+ O(ξ3) . (4.1)

7Strictly speaking, this result only proves the independence of the function p with respect to k2, but

it does not exclude a dependence on the other parameters of the problem: the mass m and the coupling

constants contained in the potential U(φ). However, as is clear from the operator whose determinant we

are calculating, this dependence only arises from the combination (m2 + U ′′(φ0(τ ))) which means that it

can enter in the final result only via the solutions ηa and ηb, i.e., via the function Ω. Thus, the prefactor

exp(p(k2)) cannot contain any implicit dependence on these parameters.

– 12 –



J
H
E
P
0
8
(
2
0
0
7
)
0
0
7

Notice that we could be in trouble because a priori we must keep φ2 — the term of order

ξ2 in the classical solution φc — in the second term of the right hand side, which would be

much more difficult to obtain. We will not need this term however, because φ0 is an exact

solution of the classical equations of motion. Indeed, one can write

δ(1)SE =

∫

(d4x)E

1

2

[

−φ̈0(τ) + m2φ0(τ) + U ′(φ0(τ))
]

(φ1(x) + φ2(x))

+

∫

d3x
[

φ̇0(τ)(φ1(x) + φ2(x))
]τ=+β/2

τ=−β/2
. (4.2)

The integrand in the first term of the right hand side vanishes identically because φ0(τ)

obeys the classical equation of motion associated to the action S
E
. The second term — a

boundary term — can be rewritten as follows:

∫

d3x
[

φ̇0(τ)(φ1(x) + φ2(x))
]τ=+β/2

τ=−β/2
=

[

φ̇0(+β/2) − φ̇0(−β/2)
]

∫

d3xξ(x) , (4.3)

and it vanishes because the fluctuation ξ(x) of the field at the boundary has a vanishing

average. The second order variation of the action — the third term in the right hand side

of eq. (4.1) — can be written as

δ(2)S
E

=
1

2

∫

(d4x)
E

[(

∂µφ1(x)
)(

∂µφ1(x)
)

+m2φ2
1(x)+U ′′(φ0(τ))φ2

1(x)
]

=
1

2

∫

(d4x)
E

∂µ

[

φ1(x)∂µφ1(x)
]

+
1

2

∫

(d4x)
E

φ1(x)
[

¤
E

+ m2 + U ′′(φ0(τ))
]

φ1(x) . (4.4)

The integrand of the second term vanishes because of the equation of motion obeyed by

the field φ1(x). Therefore, the second order variation of the classical action comes entirely

from the boundary term

δ(2)S
E

=
1

2

∫

d3x [φ1(τ,x)∂τφ1(τ,x)]
τ=+β/2
τ=−β/2 . (4.5)

By rewriting this integral in momentum space, and by making use of the boundary condition

obeyed by φ1(τ,x) and of eq. (3.12), we can rewrite this as follows:8

δ(2)S
E

=
1

2

∫

d3k

(2π)3
C(k) ξ(k)ξ(−k) , (4.6)

where we denote

C(k) ≡
[[

∂τ∂τ ′G(τ, τ ′,k2)
]τ ′=+β/2

τ ′=−β/2

]τ=+β/2

τ=−β/2
. (4.7)

8In order to obtain this formula, we use the relation

ˆ

∂τ ′G(τ, τ ′, k2)
˜τ ′=+β/2

τ ′=−β/2
=

Ω(τ,−β
2
, k2) + Ω(β

2
, τ, k2)

Ω(β
2
,−β

2
, k2)

.

Therefore, this quantity is equal to 1 at τ = ±β/2.
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Therefore, the Gaussian functional integral over ξ leads to the following result:

e−S
E

[φ0]

√

∏

k6=0

βC(k)
= e−S

E
[φ0] exp

[

−
V

2

∫

d3k

(2π)3
ln (βC(k))

]

. (4.8)

The constraint k 6= 0 serves to remove the contribution of the zero-modes, i.e., the functions

ξ(x) that are constant, since these are taken into account in the quantity ϕ0. Factors of

β have been introduced in order to make the arguments of the log and of the square root

dimensionless.

4.2 Calculation of C(k)

The quantity C(k) defined in eq. (4.7) involves the calculation of two derivatives of the

Green’s function evaluated at the boundaries. This may pose a problem because the

derivative of G is not continuous at coincident points. It is crucial to note that eq. (4.7)

imposes a very definite order when taking the limits τ, τ ′ → ±β/2. This leads to an

unambiguous expression for C(k):

C(k) = lim
τ,τ ′→+β/2

τ<τ ′

∂τ∂τ ′G(τ, τ ′,k2) + lim
τ,τ ′→−β/2

τ>τ ′

∂τ∂τ ′G(τ, τ ′,k2)

− lim
τ ′→+β/2
τ→−β/2

∂τ∂τ ′G(τ, τ ′,k2) − lim
τ ′→−β/2
τ→+β/2

∂τ∂τ ′G(τ, τ ′,k2) . (4.9)

From eq. (3.21), we see that, depending on the order of τ and τ ′, the double derivative of

the propagator reads:

∂τ∂τ ′G(τ, τ ′,k) = −
∂τΩ(β/2, τ,k2)∂τ ′Ω(τ ′,−β/2,k2)

W Ω(β/2,−β/2,k2)
if τ ′ < τ ,

∂τ∂τ ′G(τ, τ ′,k) = −
∂τ ′Ω(β/2, τ ′,k2)∂τΩ(τ,−β/2,k2)

W Ω(β/2,−β/2,k2)
if τ ′ > τ .

(4.10)

Using the explicit form of Ω(τ, τ ′,k2) given in eq. (3.17), a straightforward calculation

gives:

C(k) =

det

(

∆ηa(k
2) ∆η̇a(k

2)

∆ηb(k
2) ∆η̇b(k

2)

)

det

(

ηa(
β
2 ,k2) ηa(−

β
2 ,k2)

ηb(
β
2 ,k2) ηb(−

β
2 ,k2)

) , (4.11)

where we denote

∆ηa,b(k
2) ≡

[

ηa,b(τ,k
2)

]τ=+β/2

τ=−β/2
, ∆η̇a,b(k

2) ≡
[

η̇a,b(τ,k
2)

]τ=+β/2

τ=−β/2
. (4.12)

Notice that the form of C(k) given in eq. (4.11) makes obvious the fact that C(k) does

not depend upon the choice of the two solutions ηa and ηb that one takes, as long as

they are linearly independent. Indeed, the coefficients C(k) are a property of the classical
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action itself, and should be independent on the basis chosen for the fluctuations around

the classical field.

If we take two solutions ηa and ηb such that

ηa(−β/2,k2) = 1 , η̇a(−β/2,k2) = 0 ,

ηb(−β/2,k2) = 0 , η̇b(−β/2,k2) = 1/β , (4.13)

then

C(k) =
2
(

ηa(β/2,k2) − 1
)

βηb(β/2,k2)
, (4.14)

where we use the relation

β η̇b(β/2,k2) = ηa(β/2,k2) (4.15)

which is demonstrated in appendix B. We will suppose that (m2 +U ′′) is positive.9 In this

case, one can easily show from (3.15) that ηa is monotonically increasing in [−β/2, β/2].

This implies that C(k) > 0 and δ(2)S
E

> 0, which means that the fluctuations of the

boundary field always increase the value of the action compared to the configuration with

a uniform boundary condition. This can be seen as an a posteriori justification for the

choice of expanding around configurations with a uniform boundary condition; indeed,

such configurations have a smaller action than those with fluctuations of the boundary

condition, and thus are the leading contribution to the partition function.

4.3 Diagrammatic interpretation

The Gaussian integration of exp(−S
E
[φc]) over the fluctuations of the field on the time

boundary also corresponds to some one loop corrections. To begin with, let us recall the

obvious fact that the classical action S
E
[φc] only contains terms that are quadratic or

quartic in the classical field φc. Moreover, we have already seen at the end of section 2 that

the classical field φc is the sum of all the tree diagrams with one external leg, terminated

on the other side by the boundary field ϕ (see figure 2). Thus, S
E
[φc] is a sum of tree

diagrams that have no external legs, with the boundary field ϕ at the endpoints of the

tree. A typical diagram of that sort has been represented in figure 3.

At this point, these diagrams represent the classical action for an arbitrary field ϕ as

the boundary condition. Writing ϕ(x) = ϕ0 + ξ(x) and doing a Gaussian approximation

means that, for each diagram like the one displayed in figure 3, all the black dots except two

of them are replaced by a uniform boundary field ϕ0 and the remaining two are replaced

by the fluctuation ξ(x) of the boundary. Then, integrating out the field ξ means that the

endpoints where the ξ’s are attached are linked together, thereby forming a loop. To this

loop can be attached an arbitrary number of tree diagrams terminated by ϕ0: each of these

trees is a contribution to φ0(τ), the classical solution with boundary value ϕ0.

Thus, we conclude that the terms resulting from the Gaussian average over the fluc-

tuations of the boundary field are also 1-loop contributions in a background made of the

field φ0(τ). These terms are therefore on the same footing as the terms included via the

9In other terms, the spectrum of the semiclassical propagator has no bound states [36].
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Figure 3: Diagrammatic expansion of the classical action S
E
[φc] in terms of the boundary value

of the field (black dots).

determinant det (A∗[φ0]). Moreover, this analysis of the diagrammatic content of our ap-

proximate expressions confirms the self-consistency of these approximations: it would have

been inconsistent to keep Gaussian fluctuations of the boundary in det (A∗[φc]), because

by doing this we would include two-loop terms in the background field φ0.

As we shall see in section 5, another consistency check of our final formula can be

made based on the structure of its ultraviolet divergences: it contains exactly the diver-

gences one expects of the 1-loop effective action in the background field φ0(τ), and is thus

straightforward to renormalize. It is important to realize that we need both the 1-loop

corrections coming from det (A∗[φc]), and those coming from the Gaussian integration over

the fluctuations of the boundary field in order to reproduce the usual pattern of 1-loop ul-

traviolet divergences. Failing to include one of the types of terms, one would have spurious

divergences that could not be removed by the usual renormalization procedure.

4.4 Final formula for the partition function

Collecting everything together, we can write the following formula for the (non-

renormalized) partition function:

Z ≈

+∞
∫

−∞

dϕ0 e−S
E

[φ0] exp−
V

2

∫

d3k

(2π)3
ln

[

1

W

∣

∣

∣

∣

∣

∆ηa(k
2) ∆η̇a(k

2)

∆ηb(k
2) ∆η̇b(k

2)

∣

∣

∣

∣

∣

]

, (4.16)

which is valid for arbitrary choices of k2-independent initial conditions. Indeed, the ratio of

the determinant and the Wronskian inside the logarithm does not depend on any particular

choice for the two solutions ηa and ηb. In practice, one can take advantage of this freedom

in order to simplify the numerical calculations. In particular, for the initial conditions

defined in (4.13) we have

1

W

∣

∣

∣

∣

∣

∆ηa(k
2) ∆η̇a(k

2)

∆ηb(k
2) ∆η̇b(k

2)

∣

∣

∣

∣

∣

= 2
(

ηa(β/2,k2) − 1
)

. (4.17)

Thus, we have obtained a fairly compact formula that resums (in the Gaussian approxi-

mation) the fluctuations around the classical solution and the fluctuations of the boundary
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condition. At this stage, the calculation only involves solutions of some ordinary differen-

tial equations, which is in principle straightforward to obtain numerically. For each ϕ0,

one must determine the following quantities:

1. the classical solution φ0(τ),

2. the classical action S
E
[φ0],

3. for each k2, two independent solutions ηa(τ,k
2) and ηb(τ ;k2) of the equation of

fluctuations around the classical solution φ0(τ).

Notice that all the quantities that depend on k in fact only depend on |k|. This means

that the integration over k is in fact a one dimensional integral.

5. Renormalization

Our final expression, eq. (4.16), is plagued by ultraviolet divergences if taken at face value.

These divergences arise from the integration over the momentum k in the second line. It

is in fact easy to convince oneself that these divergences can be dealt with by the usual

1-loop renormalization procedure. In order to see this, one must write the solutions ηa and

ηb as series in the interaction term U ′′(φ0) with the background field. Indeed, if we denote

by η
(n)
a,b the term in ηa,b that has n powers of U ′′(φ0), we have the following relations:

(∂2
τ − ω2

k)η
(0)
a,b = 0 ,

(∂2
τ − ω2

k)η
(n+1)
a,b = U ′′(φ0)η

(n)
a,b . (5.1)

From these equations, one can see that η
(n+1)
a,b has an extra power of 1/k2 at large k

compared to η
(n)
a,b . Thus, we expect that only a finite number of terms in this expansion

will actually contain ultraviolet divergences. To check this, let us calculate explicitly the

first three terms in the expansion of the right hand side of eq. (4.17). The solutions η
(0)
a,b

that obey the boundary conditions of eq. (4.13) are given by:

η(0)
a (τ,k2) = cosh

(

ωk

(

τ +
β

2

))

,

η
(0)
b (τ,k2) =

sinh
(

ωk

(

τ + β
2

))

βωk

. (5.2)

Notice that these 0th-order solutions already saturate the boundary conditions at τ = −β/2

in eq. (4.13). Thus, the higher order terms in ηa,b should vanish and have a vanishing first

time derivative at τ = −β/2. In order to find these terms, it is useful to first construct a

Green’s function G0(τ, τ ′,k2) of the operator ∂2
τ − ω2

k that obeys the following conditions:

(∂2
τ − ω2

k)G0(τ, τ ′,k2) = δ(τ − τ ′) ,

G0

(

τ = −
β

2
, τ ′,k2

)

= 0 ,

∂τG0

(

τ = −
β

2
, τ ′,k2

)

= 0 . (5.3)
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It is straightforward to check that the propagator obeying these conditions is given by

G0(τ, τ ′,k2) = θ(τ − τ ′)
sinh(ωk(τ − τ ′))

ωk

, (5.4)

which is nothing but the retarded Green’s function of ∂2
τ −ω2

k. With this Green’s function,

one can write

η
(n+1)
a,b (τ,k2) =

∫ +β/2

−β/2
dτ ′ G0(τ, τ ′,k2) U ′′(φ0(τ

′)) η
(n)
a,b (τ ′,k2) . (5.5)

Notice that, since the classical solution φ0(τ) does not depend on space, the relationship

between η
(n+1)
a,b and η

(n)
a,b is local in k.

At this point, it is a straightforward matter of algebra to obtain ηa,b up to second order

in U ′′. We obtain

2
(

ηa(β/2,k2) − 1
)

= eβωk

{

1 +

∫ +β/2

−β/2
dτ ′ U ′′(φ0(τ

′))
2ωk

+
1

2

[

∫ +β/2

−β/2
dτ ′ U ′′(φ0(τ

′))
2ωk

]2

−
1

2

∫ +β/2

−β/2
dτ ′dτ ′′ e−2ωk |τ ′−τ ′′|

(2ωk)2
U ′′(φ0(τ

′)) U ′′(φ0(τ
′′))

+O(e−βωk ) + O((U ′′)3)

}

. (5.6)

Inside the curly brackets, we have dropped all the terms that would go to zero exponentially

when |k| → +∞. Indeed, these terms do not contribute to the ultraviolet divergences we

are studying in this section. In this expression, we recognize the time-ordered propagator,

which reads

G0
F
(τ, τ ′,k2) =

e−ωk |τ−τ ′|

2ωk

. (5.7)

It is a remarkable feature of eq. (4.17) that, while having a fairly natural expression in terms

of a retarded propagator, it can be rearranged as an expression involving the time-ordered

propagator (at least for the terms that will contribute to the ultraviolet divergences).

The terms that appear in the curly bracket in eq. (5.6) have a fairly simple interpre-

tation in terms of Feynman diagrams. For a scalar theory with a φ4 coupling, the first

non-trivial term can be represented as

∫ +β/2

−β/2
dτ ′ U ′′(φ0(τ

′))
2ωk

= . (5.8)

Notice that, in this expression, 1/2ωk is the equal-time value of the time-ordered propaga-

tor. Similarly, the term on the third line can be represented as

−
1

2

∫ +β/2

−β/2
dτ ′dτ ′′ e−2ωk |τ ′−τ ′′|

(2ωk)2
U ′′(φ0(τ

′)) U ′′(φ0(τ
′′)) = . (5.9)

The second term on the second line of eq. (5.6) would be represented by a graph made of two

disconnected components, each of which is given in eq. (5.8) (the factor 1/2 is the symmetry
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factor that results from the possibility of exchanging the two connected components). In

fact, when we take the logarithm (as required by eq. 4.16), these disconnected contributions

simply drop out:

1

2
ln

[

2
(

ηa(β/2,k2) − 1
)

]

=
βωk

2
+

1

2

∫ +β/2

−β/2
dτ ′ U ′′(φ0(τ

′))
2ωk

(5.10)

−
1

4

∫ +β/2

−β/2
dτ ′dτ ′′ e−2ωk |τ ′−τ ′′|

(2ωk)2
U ′′(φ0(τ

′))U ′′(φ0(τ
′′)) + · · ·

One can check that the cancellation of the disconnected terms when one takes the logarithm

is in fact quite general, and works to all orders. Finally, when we integrate over k, the first

term gives the usual zero-point energy, and the next two terms are the first two non-trivial

terms of the zero temperature10 1-loop effective action (for this, it was important to be

able to rewrite the expression in terms of time-ordered propagators). All these terms are

ultraviolet divergent. If calculated with a momentum cutoff Λ, they behave respectively

as Λ4, Λ2, and ln(Λ), if there are 3 spatial dimensions. All the higher order terms in the

expansion in powers of U ′′ are ultraviolet finite, because they have at least one extra power

of 1/k2 when |k| → +∞.

This identification tells us that, in order to renormalize our final expression, we must

follow the following procedure:

1. subtract the “zero point energy” in ln(Z), i.e., subtract βωk/2 from the integrand in

the integration over k,

2. add the one-loop counterterms to the classical action S
E
[φ0], and simultaneously

regularize the integration over k.

Notice that the regularization scheme employed for calculating the counterterms must be

identical to that used when computing the integral over k. Thus, a regularization by an

ultraviolet cutoff seems the most convenient method here. Once the above two steps have

been carried out, one will have a Λ dependent expression that tends to a finite result when

Λ → +∞.

This expression of Z is free of any ultraviolet divergence. But, naturally, it is now

expressed in terms of couplings and masses that are scheme dependent (because one must

chose a particular renormalization scheme11 in order to define uniquely the counterterms

that are added to the classical action). The standard procedure at this point is to ex-

press other physical quantities in terms of the same scheme-dependent parameters, and to

eliminate them in order to have relationships that involve only physical quantities.

6. Conclusions

We have derived a semiclassical approximation for the partition function of a system of

scalar fields in the presence of an arbitrary single-well interaction potential. In the path-

10We recover the well known fact that, if a theory is renormalizable at T = 0, it is also renormalizable at

finite T , with the counterterms evaluated at T = 0.
11The renormalization scheme should not be confused with the regularization scheme.
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integral formalism, the partition function is an integral over periodic configurations in

imaginary time, and is dominated by classical trajectories. The non-perturbative informa-

tion contained in the classical solutions serves as the starting point for this semiclassical

approximation.

Euclidean classical solutions are usually not known for arbitrary (periodic) boundary

conditions. However, by first considering classical solutions that correspond to a spatially

independent boundary condition (finding these special solutions amounts to solving an

ordinary differential equation), one can construct approximate classical solutions obeying

arbitrary boundary conditions in a systematic fashion. We have calculated the contribution

of quantum fluctuations around those classical solutions in a self-consistent scheme. Our

final formula for Z admits a simple expression in terms of two independent solutions of the

equation of small fluctuations around the classical solutions, and is thus easily amenable

to a numerical evaluation. Despite its simplicity, our expression treats exactly the mean

value of the field on the boundary, no matter how large. Moreover, we have shown that

this expression is renormalizable by the subtraction of the standard one-loop counterterms,

and by the subtraction of the free-field energy.

The formula we have obtained for the partition function is non-perturbative in the

sense that it resums the interactions to all orders for the configurations where the mean

value of the field on the boundary is large. This can be seen by investigating which classes

of diagrams of the usual perturbation theory are taken into account in our approach. We

expect that thermodynamical properties derived from this semiclassical expression for Z

will be valid in a wider domain in the parameter space (T, {λ}) (where {λ} represents the

coupling constants) as compared to results obtained from the plain perturbative expansion.

We are currently investigating in detail the case of a theory with a λφ4 coupling. Results,

including a detailed comparison with those obtained by other resummation schemes, will

be presented in a future publication.

Natural candidates for a direct application of the result derived in this paper are

condensed matter systems containing scalar order parameters, such as density or magne-

tization. Extensions to potentials with more that one minimum, and other field theories

can also be pursued.

Acknowledgments

We would like to thank the financial support of the CAPES-COFECUB project 443/04.

A.B., C.A.C. and E.S.F. would also like to thank the support of CAPES, CNPq, FAPERJ

and FUJB/UFRJ.

A. The free case

The action in the free theory is given by

S[φ] =

∫ β/2

−β/2
d3xdτ

[

1

2
∂µφ∂µφ +

1

2
m2φ2

]

, (A.1)
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leading to the equation of motion:
[

∂2
τ − m2

]

φ0 = 0 . (A.2)

The classical solution satisfying φ0(−β/2) = φ0(β/2) = ϕ0 is

φ0 = ϕ0

[

cosh(m(τ + β/2)) +
(1 − cosh(βm))

sinh(βm)
sinh(m(τ + β/2))

]

. (A.3)

It is easy to show that SE[φ0] = αϕ2
0, with α = mV (cosh(βm) − 1)/sinh(βm), where

V is the volume. Following our main result, we need two solutions of
[

∂2
τ − (m2 + k2)

]

η = 0 , (A.4)

obeying eq. (4.13). We have already seen these solutions in eq. (5.2). We obtain

2
(

ηa(β/2,k2) − 1
)

= 2(cosh(βωk) − 1) (A.5)

= (1 − exp(−βωk))2 exp(βωk) .

Finally, we have

Z ≈

+∞
∫

−∞

dϕ0 e−αϕ2
0 exp

[

−V

∫

d3k

(2π)3

(

ln(1 − e−βωk ) +
βωk

2

)]

(A.6)

=

√

π

α
exp

[

−V

∫

d3k

(2π)3

(

ln(1 − e−βωk ) +
βωk

2

)]

(A.7)

that is (up to an overall factor, irrelevant after taking the thermodynamic limit) the known

result for the harmonic oscillator (not yet renormalized). We see that our approximation

scheme leads to the exact result in the case of the free theory. Naturally, this is due to

the fact that, in the absence of any interactions, the Gaussian approximation represents

exactly the fluctuations in the system.

B. Proof of relation (4.15)

From eq. (3.1), it follows that φ0(−τ) = φ0(τ). As a consequence, the equation for the

fluctuations is invariant under parity. That invariance implies that the following solution

(ignoring the trivial dependency on k2):

ηe(τ) = ηa(τ) +
1 − ηa(β/2)

ηb(β/2)
ηb(τ) ,

which obeys ηe(−β/2) = ηe(β/2) = 1, is even. Therefore, η̇e is odd. In particular,

η̇e(β/2) = −η̇e(−β/2), and we obtain

η̇a(β/2) +
1 − ηa(β/2)

ηb(β/2)
η̇b(β/2) = −η̇a(−β/2) −

1 − ηa(β/2)

ηb(β/2)
η̇b(−β/2)

=
ηa(β/2) − 1

β ηb(β/2)
.

Multiplying by β ηb(β/2), we have

β ηb(β/2)η̇a(β/2) − β ηa(β/2)η̇b(β/2) + β η̇b(β/2) = ηa(β/2) − 1 .

Using that the wronskian is equal to 1/β, the identity follows.
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