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1. Introduction

A general and challenging problem in effective superstring theories described by supergrav-

ity lagrangians is to understand the nature of spontaneous supersymmetry breaking in a

model independent fashion [1]–[6].

Superstring vacua obtained by IIB orientifolds with three-forms fluxes turned on [7]–

[17] offer suitable examples where the spontaneous breaking of N = 4 → N = 0 super-

symmetry can occur by stepwise breaking of supersymmetry N → N − 1 with vanishing

vacuum energy.

Although quantum corrections may spoil this mechanism [18] (especially if the true

vacuum has no supersymmetry), the hope remains that this mechanism may create a

hierarchy of scales, as was suggested in the old no-scale supergravity models [19, 20]. We

will indeed show that such vacua, giving partial breaking of supersymmetry, are generalized

no-scale models.

In extended supergravity the no-scale structure, which results in a positive potential

with vacua exhibiting flat directions, crucially depends on the gauge group at work.

The model we will consider here has the property that the scalar manifold of hyper-

multiplets has some translational isometries corresponding to shifts in the “axion scalars”

directions. This in turn implies that a “triangular parametrization” can be given of the

manifold, where the axions are contained in the off-diagonal block of the vielbein one

form [21, 22, 23].
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We consider the N = 2 theory based on the following non linear σ-model

M =MV ×MQ =
SU(1, 1)

U(1)
×

SU(2, 2)

SU(2)× SU(2)×U(1)

where SU(1, 1)/U(1) is the special Kähler manifold which corresponds, in a certain (non-

degenerate) choice of special coordinates, to a linear prepotential

F (X) = iX0X1 ; f(z) = iz with z =
X1

X0
. (1.1)

The two dimensional quaternionic manifoldMQ
1 is also Kähler and it has four trans-

lational isometries, corresponding to the decomposition

SU(2, 2)→ SL(2,C)× SO(1, 1) (1.2)

under which

su(2, 2)→ sl(2,C) + so(1, 1) + 4+ + 4− .

In the gauged version of the model we use the two vectors (the graviphoton plus one

matter vector) to gauge two of the four translational isometries 4+ of SU(2, 2). More

precisely, since 4+ is a lorentzian four-vector, one has to gauge two out of the three spatial

components of 4+.

This model is an N = 2 truncation [24, 25] of a type-IIB T 6/Z2 orientifold with fluxes.

Here the two remainig fluxes are described by two gauge coupling constants.

A crucial point of this gauging is that it must be formulated in a duality basis [27]

for special geometry which has a degenerate holomorphic section XΛ(z) (and where no

function F (X) exists) [28, 21], that is in a basis non locally related to the “standard”

one (1.1). This is because otherwise it would be impossible to break N = 2 → N = 1

since N = 2 would be either unbroken or completely broken [29, 30]. However, the no-go

theorem [30] is based on the applicability of the N = 2 tensor calculus [31], which precisely

fails for those symplectic bases for which no prepotential function F (X) exists.

The role of different choices of symplectic embeddings of duality symmetries has been

investigated in recent time [24, 25, 26]

The symplectic basis to be chosen, to realize the partial breaking of supersymmetry, is

the one considered in reference [21] and further extended to the case of SU(1,1+n)
SU(1+n)×U(1) in [32].

In this basis we have XΛ = (X0,−iX0) and FΛ = (iX1, X1), so that in the z coordinate

z = X1/X0 the symplectic section is:

XΛ = (1,−i), FΛ = (iz, z) . (1.3)

Correspondingly, the Kähler potential of the SU(1, 1)/U(1) special manifold is:

K = − log[i(X̄ΛFΛ −XΛF̄Λ)] = − log[−2(z + z̄)] ; Re z < 0 (1.4)

1We call nH the (quaternionic) dimension of a quaternionic manifold, where 4nH is its real dimension.

nH is the number of hypermultiplets of the given N = 2 theory.
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The reason for this choice of duality basis comes from the embedding of the type-IIB

vectors in the duality group [10, 11, 33]. This requires the choice of a basis in which the θ

term (given by ReNΛΣ in special geometry [34]) is proportional to the axion contained in

the vector multiplet. Indeed, in our basis the kinetic vector matrix is N = iz
�
, which has

the required property.

2. Quaternionic manifolds and axion symmetries

The manifold G/H = SU(2,2)
SU(2)×SU(2)×U(1) can be parametrized, according to the decomposi-

tion (1.2), through a coset element which is the following SU(2, 2) 4× 4 matrix

L =

(

E −BE−1

0 E−1

)

(2.1)

where E is an element of SL(2,C)
SU(2) × SO(1, 1)

E = e0
�
+ eiσi (e0, ei ∈ R ; i = 1, 2, 3 ; σi are Pauli matrices) (2.2)

with e0 > 0 and det(E) ≡ e2 = (e0)2 − eiei > 0, and B is an antihermitian matrix

B = ib0
�
+ ibiσi (b0, bi ∈ R) . (2.3)

Its left invariant one-form Γ = L−1dL, satisfying the Maurer-Cartan equation dΓ +

Γ ∧ Γ = 0 is an su(2, 2) matrix

L−1dL =

(

E−1dE −E−1dBE−1

0 EdE−1

)

. (2.4)

In order to extract from it the expressions for the H-connection and vielbein of G/H,

let us compare (2.4) with the general form of an arbitrary element of the su(2, 2) Lie

algebra, satisfying TrA = 0; ηA†η = −A with η =
(

0 �
� 0

)

,

A =

(

p
�
+ (q1 + iq2)

iσi i(r
�
+ siσi) + i(t

�
+ uiσi)

i(r
�
+ siσi)− i(t

�
+ uiσi) −p

�
− (q1 − iq2)

iσi

)

(2.5)

where the 15 elements p, qi1, q
i
2, r, s

i, t, ui are all real. The maximal compact subalgebra

su(2)× su(2) × u(1) is given by the antihermitean part of A:

h =
1

2
(A−A†) =

(

iqi2σ
i i(r

�
+ siσi)

i(r
�
+ siσi) iqi2σ

i

)

(2.6)

while the generators of the coset SU(2, 2)/[SU(2)×SU(2)×U(1)] are in the hermitean part

of A

k =
1

2
(A+A†) =

(

p
�
+ qi1σ

i i(t
�
+ uiσi)

−i(t
�
+ uiσi) −p

�
− qi1σ

i

)

(2.7)
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By comparison, noting that for the left-invariant form Γ of (2.4) we have:

r = t si = ui

p
�
+ qi1σ

i =
1

2
(E−1dE + h. c.)

iqi2 σ
i =

1

2
(E−1dE − h. c.)

2i(r
�
+ siσi) = −E−1dBE−1 (2.8)

we finally obtain the decomposition of (2.4) in vertical (G/H) and horizontal (H) compo-

nents:

(L−1dL)H =

(

ω1 ω0 + ω2

ω0 + ω2 ω1

)

= Ωsu(2)×su(2)×u(1) (2.9)

with

ω0 = ω0
�
= −

i

2(e2)2
[((e0)2 + eiei)db0 − 2e0eidbi]

�

ω1 = ωi
1σ

i = −
i

e2
εijkejdekσi

ω2 = ωi
2σ

i = −
i

2(e2)2
[−2e0eidb0 + (e2δij + 2eiej)dbj ]σi (2.10)

and

(L−1dL)G/H =

(

V0 + V1 ω0 + ω2

−ω0 − ω2 −V0 − V1

)

= V (2.11)

with

V0 =
1

e2
[e0de0 − eidei]

�

V1 =
1

e2
[e0dei − eide0]σi . (2.12)

The vielbein one-form has the off-diagonal components which are given in terms of the off-

diagonal components of the H-connection. As we will see in the next section, this peculiar

fact is at the origin of the no-scale structure of the theory.

The kinetic energy term is given by

huvdq
udqv =

1

2
Tr
[

(

L−1dL
)

G/H
·
(

L−1dL
)

G/H

]

. (2.13)

In the gauged theory the differential dq is replaced by Dq, which implies that dL → DL

in (2.13). In the following we will denote by ω̂, V̂ the gauged connection and vielbein in

L−1DL related to the corresponding ungauged objects of (2.4).

Let us conclude this paragraph by noticing that another (one dimensional) quaternionic

manifold, USp(2,2)
USp(2)×USp(2) , can be obtained from the former if we further impose on L to be

symplectic, i.e.

LTΩL = Ω , with Ω =

(

0 ε

ε 0

)

.
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It is straightforward to show that this sets ei = b0 = 0 so that

L =

(

a
�
−ia−1biσi

0 a−1
�

)

L−1dL =

(

a−1da
�
−ia−2dbiσi

0 −a−1da
�

)

(L−1dL)H =

(

0 − i
2a2 db

iσi

− i
2a2 db

iσi 0

)

= Ωsu(2)R

(L−1dL)G/H =

(

a−1da
�
− i

2a2 db
iσi

i
2a2 db

iσi −a−1da
�

)

= V (2.14)

We note that also in this case the off-diagonal component of V are related to the su(2)

connection that here coincides with the R-symmetry connection ω i
R = dbi

a2 . This is the

quaternionic manifold underlying the simplest example of N = 2 gauged supergravity with

partial breaking of supersymmetry considered in the literature [35, 21].2

3. Gauging quaternionic isometries; scalar potential and masses

In absence of non abelian gauging, N = 2 supergravity predicts a scalar potential of the

form [34]

V = 4huvk
u
Λk

v
ΣX̄

ΛXΣeK + UΛΣP i
ΛP

i
Σ − 3P i

ΛX̄
ΛP i

ΣX
ΣeK , (i = 1, 2, 3) . (3.1)

The first term is the contribution of the hyperinos variation, the second term is the

contribution of the gauginos and the third of the gravitinos.

The matrix UΛΣ is given, by special geometry, to be

UΛΣ = eKDiX
ΛD̄X̄

Σgī = −
1

2
(ImNΛΣ)

−1 − eKX̄ΛXΣ (3.2)

In the case at hand, the symplectic section (1.3) gives, for the kinetic matrix, NΛΣ = iz
�
,

so that − 1
2(ImNΛΣ)

−1 = 2eKδΛΣ and we get

UΛΣP i
ΛP

i
Σ = −

1

2(z + z̄)

(

P i
1P

i
1 + P i

2P
i
2

)

= P i
ΛP

i
ΣX̄

ΛXΣeK (3.3)

From (3.3), the second and third terms in (3.1) together give a negative contribution to

the potential:

−2P i
ΛX̄

ΛP i
ΣX

ΣeK =
1

(z + z̄)

(

P i
1P

i
1 + P i

2P
i
2

)

. (3.4)

The above term can be further simplified by noting that, when gauging axion symmetries

(this actually implies, in the parametrization chosen, that all components of the SU(2)

connections are b-independent), we have [34, 3, 37]

P i
Λ = (ωi

R)uk
u
Λ (3.5)

where (ωi
R)u is the component of the R-symmetry SU(2) connection ωi

R ≡ 2i(ωi
1 + ωi

2).

2Note that, in order to compare (2.14) with reference [21], we have to set, for the coordinate b0 of [21],

b0 = a2.
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The scalar potential then becomes

V =
1

4
eK
[(

4hb1b1 − 2(ωi
2)b1(ω

i
2)b1

)

g21 +
(

4hb2b2 − 2(ωi
2)b2(ω

i
2)b2

)

g22
]

, (3.6)

where we have taken kbi
0 = g1

2 δi1, k
bi
1 = g2

2 δi2.

By virtue of the actual form of (L−1dL)H and (L−1dL)G/H , we notice that the ω2

contributions exactly cancel in V , with the ω0 terms left, so that

V =
2

(e2)4
eKe20(e

2
1g

2
1 + e22g

2
2) (3.7)

which gives
∂V

∂e1
=

∂V

∂e2
= 0 ⇒ e1 = e2 = 0 (3.8)

while z, e0 and e3 are flat directions.

From the normalization of the kinetic term of the hypermultiplets, setting e1 = e2 = 0,

so that e2 = e20 − e23, we have, for the two scalars e1, e2

heiej
deidej = Tr(V1 · V1) =

2

(e2)2
e20
(

(de1)
2 + (de2)

2
)

(i, j = 1, 2) (3.9)

so that the scalar masses are m2
i = eK

g2
i

(e2)2
.

The gravitino mass matrix is given by [34]

SAB =
i

2
e

K
2 P i

ΛX
Λ(σiε)AB =

i

4
e

K
2

[

g1(ω
i
R)b1 − ig2(ω

i
R)b2

]

(σiε)AB . (3.10)

From the explicit form of (ωi
R)b = 2i(ωi

2)b we read (at e1 = e2 = 0)

(ωR)bi
= −

1

(e2)2
(e20 − e23)(σiε) , (i = 1, 2) (3.11)

so that, recalling that σ1ε = −σ3, σ2ε = i
�
(ε = iσ2) and that the physical gravitino masses

are given by the eigenvalues of 2SAB

SAB = −
i

2

e
K
2

e2

( g2−g1
2 0

0 g1+g2
2

)

(3.12)

Unbroken N = 1 supersymmetry requires |g1| = |g2| = g, in which case the hyperscalars

and the gravitino masses are just equal to each other

m2 =
eK

(e2)2
g2 (3.13)

The vector bosons masses come from the gauge covariant derivative Dbi (i = 1, 2) in

the hypermultiplets (gauged) kinetic term

hbibj
DbiDbj = −Tr(ω̂2 · ω̂2) =

1

2(e2)2

[

(

db1 +
1

2
g1A

0

)2

+

(

db2 +
1

2
g2A

1

)

]2

= · · ·+
1

8(e2)2
[

g21(A
0)2 + g22(A

1)2
]

. (3.14)
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This term has to be confronted with the vectors kinetic term in the lagrangian:

ImNΛΣF
Λ
µνF

Σµν = Re z[(F 0
µν)

2 + (F 1
µν)

2] (3.15)

where we have chosen the field strenghts normalization F Λ
µν = 1

2 (∂µA
Λ
ν − ∂νA

Λ
µ ). Using the

fact that Re z = − 1
4e
−K, the standard contribution F 2 + 1

2A
2 is finally got with the vector

(squared) masses

m2
i =

eK

(e2)2
g2i . (3.16)

Note that this result is also true in the one dimensional case of [38], since the number

of vector bosons and charged axions is the same in the two theories.

We just note that in the case of the one dimensional quaternionic manifold USp(2,2)
USp(2)×USp(2)

[30, 21] the ω0 term is absent so that

4hbibi
− 2ωx

bi
ωx
bi
= 0 (3.17)

giving V ≡ 0, instead of being 8
(e2)4

e20e
2
e as in the actual case, which leads to V > 0.

4. Relation to N = 2 warped compactifications

The model considered here is the bulk massless sector of the effective theory of the type-IIB

orientifold [10, 11] with N = 4 supersymmetry partially broken to N = 2 and then to N =

0. Technically this result is obtained by integrating out two of the four gravitino multiplets,

by assuming that m3,m4 À m1,m2. In particular, let us start with the SO(6, 6)/SO(6)×

SO(6) manifold with coordinates gIJ = gJI , bIJ = −bJI (I, J = 1, . . . , 6). If we use complex

coordinates I = (i, ̄) (i, ̄ = 1, 2, 3), the N = 4 → N = 3 truncation corresponds to keep

all (gī, bī) components (and not gij , bij). A further reduction to N = 2 corresponds to

retain only e.g. (g1,1̄, gī), (b1,1̄, bī) with i, ̄ = 2, 3. Following the notations of [33], the two

massive gravitino multiplets which break N = 4 → N = 3 → N = 2 correspond to fluxes

f123, f1̄23. The residual supersymmetry is then broken N = 2 → N = 1 → N = 0 by the

fluxes f12̄3, f1̄2̄3.

It is interesting that, at each stage of partial breaking, we get an effective no-scale

supergravity model, with a rather simple geometric structure. The coset described by the

E coordinates corresponds to the metric moduli of the torus, together with Re z. The five

fields b0, bi, Im z correspond to the R-R axions which are retained in the N = 2 truncation.

This model can also be obtained by starting with a N = 3 effective theory with 3

vector multiplets [10] and integrating out a long N = 2 spin 3/2 multiplet ((3/2), 4(1),

(5 + 1)(1/2), 4(0)). One sees that the remaining massless degrees of freedom correspond

exactly to one vector multiplet and two hypermultiplets as well as the N = 2 graviton

multiplet.

The N = 3 manifold SU(3,3)
SU(3)×SU(3)×U(1) gets reduced to SU(1,1)

U(1) ×
SU(2,2)

SU(2)×SU(2)×U(1) where

4 of the 9 axions of the N = 3 manifold have been eaten by the 4 vectors of the massive

spin-3/2 multiplet and other 4 metric moduli are the scalar superpartners of the massive

gravitino.

– 7 –
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It is obvious that the present example can be generalized to include, besides the abelian

interactions gauging the axion isometries, an arbitrary interaction with n Yang-Mills su-

permultiplets [16, 17], with a coset structure [38, 32]

SU(1, 1 + n)

U(1)× SU(1 + n)
×

SU(2, 2 + n)

SU(2)× SU(2 + n)×U(1)

where n = dimGYM .

Note that this structure differs from the one considered in [36]. The vector multiplets

part is the same as the one described in [23].

The vacuum state can at most break GYM → CSA so that n is reduced to the rank

of GYM .

In the supergravity framework the Yang-Mills part corresponds to the D3-brane con-

tribution to the four-dimensional effective theory. [10, 11, 16, 17].

5. Comparison with Calabi-Yau compactifications and other models

The present theory can be compared to other effective N = 2 supergravity theories con-

sidered in the literature [2]–[5], [12]–[14], [18, 37, 39].

For example, in the context of Calabi-Yau compactifications in type-IIB superstring,

turning on fluxes corresponds to gauge axion symmetries of the quaternionic manifold,

which is obtained by c-map [40] of some special Kähler manifold [3, 37].

In the case of a quaternionic geometry obtained by c-map of a special geometry with

cubic prepotential, it was shown by Taylor and Vafa [2] that V > 0. This result is true for an

arbitrary special Kähler geometry as appropriate in type-IIB Calabi-Yau compactifications.

A positive potential was obtained at the N = 2 level in [37] in the particular simple case

of the two dimensional quaternionic manifold G2/SO(4).

However the basic relation which exists in this case is [37]

P x
ΛP

x
Σ = huvk

u
Λk

v
Σ (5.1)

which then implies

V =
(

UΛΣ + eKX̄ΛXΣ
)

P x
ΛP

x
Σ = −

1

2
(ImNΛΣ)

−1 P x
ΛP

x
Σ (5.2)

The problem with this expression is that it never vanishes unless P x
Λ = 0 since

− ImNΛΣ > 0.

This is partly a consequence of the no-go theorem of [30] which implies that, in presence

of non-degenerate sections XΛ of special geometry, either N = 2 is unbroken or it is broken

to N = 0. This point was stressed in reference [4].

Our examples evade this no-go theorem because we use degenerate sections for the

vector multiplets geometry. In our case the SU(1, 1) acting on the two vectors mixes

electric with magnetic field strenghts. This is related to the fact that in our embedding

SU(1, 1)×SU(2, 2) ⊂ SO(6, 6). The SU(1, 1) factor is not a subset of the electric subgroup

GL(6) of SO(6, 6), which is the maximal subgroup acting linearly on the vector potentials

of the parent N = 4 theory [25, 33].
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6. Quantum corrections to the cosmological constant

In the present models, giving partial super-Higgs around Minkowski vacuum, we can make

some discussion on the one-loop corrections to the cosmological constant.

Let us remind that the quartic, quadratic and logarithmic divergent parts, in any field

theory, are respectively controlled by the following coefficients [41, 42]

ak =
∑

J

(−1)2J (2J + 1)m2k
J , (k = 0, 1, 2) . (6.1)

While a0 = 0 in any spontaneously broken supersymmetric theory (quartic divergence),

the vanishing of a1, a2 is model-dependent [41]

However, under some mild assumption, in any spontaneously broken N -extended the-

ory where the partial super-Higgs N → N − 1 is permitted, the following main formulae

are true

ak =
∑

J

(−1)2J (2J + 1)m2k
J = 0 , 0 ≤ k < N . (6.2)

This relation follows from the fact that a non vanishing contribution to the vacuum energy

must be proportional to ΠN
i=1

m2
i

M2
P

M4
P .

This is the leading behavior in the variable X = ΠN
i=1

m2
i

M2
P

, at least if we assume ana-

lyticity in this variable.

From the above we conclude that there is only a finite correction in N = 3, 4 models,

while there is a logarithmic correcton to the N = 2 models and a quadratic correction to

the N = 1 models.

Note however that in the Scherk-Schwarz N = 8 models [43] the same formulae were

true but for 0 ≤ k < N/2. This is because in that case the gravitino masses were pairwise

degenerate so that the hypotesis of partial breaking N → N − 1 was invalid.

In our model all fermions helicities have masses |g1 ± g2|/2 while the two vectors and

the two massive scalars have squared masses g21 , g
2
2 .
3

Since we have 8 helicities with mass |g1 + g2|/2 and 8 helicities with mass |g1 − g2|/2,

we find 2(g1 + g2)
2 +2(g1− g2)

2 = 4g21 +4g22 which is the same as the bosonic contribution

3g21 +3g22+g21 +g22. Therefore we have
∑

J(−1)
2J (2J +1)m2

J = 0. (In the model of [30] the

bosonic and fermionic contributions were separately equal 3(g21 + g22), so that STrM2 = 0

also in that case). Note that for |g1| = |g2| N = 1 is unbroken, three spin 1/2 fermions are

massless and three have masses |g|. They join three massless chiral multiplets, one massive

gravitino multiplet and an extra massive chiral multiplet.

The quartic mass formula
∑

J

(−1)2J (2J + 1)m4
J = STrM4 (6.3)

gives a non vanishing result. It is positive

STrM4 = 3(g21 − g22)
2 e2K

(e2)4
= 48m2

1m
2
2.

In the model of [30] it is instead STrM4 = 36m2
1m

2
2.

3The masses are given in units of the moduli dependent factors e
K
2 /e2.
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7. Conclusions

In this paper we have considered a simple N = 2 lagrangian which correctly reproduces a

no-scale extended supergravity model with vanishing vacuum energy and moduli stabiliza-

tion.

The crucial ingredients, which appear to be quite general and not only inherent to the

case under investigation, are two. It is necessary to gauge some translational isometries of

the quaternionic manifold, in order to be left with a positive semidefinite scalar potential

giving partial super-Higgs. In this respect, the use of a degenerate symplectic section for

special geometry is further needed, in order to escape the no-go theorem and allow stepwise

supersymmetry breaking N = 2→ N = 1.

A property of such models is that a non trivial moduli space exists in each broken

phase. This model is supposed to describe the bulk sector of a type-IIB orientifold in

presence of fluxes. The three-form fluxes are proportional to g1 ± g2, where g1, g2 are the

two gauge couplings of the theory.

This model can be generalized to include Yang-Mills interactions by adding N = 2

vector multiplets and N = 2 hypermultiplets in the adjoint representation of some compact

Lie group.

The special geometry relevant for this generalized case, with degenerate symplectic

sections, has been described in [32], and a natural parametrization of the quaternionic

manifold also exists.

It is also natural to extend this analysis to manifolds which are not symmetric spaces

as in the present case, but still have some abelian isometries to be gauged [5]. We expect

some of the properties shown here will also apply, under suitable assumptions, to these

more general cases.
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