3,349 research outputs found
High-Q nested resonator in an actively stabilized optomechanical cavity
Experiments involving micro- and nanomechanical resonators need to be
carefully designed to reduce mechanical environmental noise. A small scale
on-chip approach is to add an additional resonator to the system as a
mechanical low-pass filter. Unfortunately, the inherent low frequency of the
low-pass filter causes the system to be easily excited mechanically. Fixating
the additional resonator ensures that the resonator itself can not be excited
by the environment. This, however, negates the purpose of the low-pass filter.
We solve this apparent paradox by applying active feedback to the resonator,
thereby minimizing the motion with respect the front mirror of an
optomechanical cavity. Not only does this method actively stabilize the cavity
length, but it also retains the on-chip vibration isolation.Comment: Minor adjustments mad
Nonlinear Decoherence in Quantum State Preparation of a Trapped Ion
We present a nonlinear decoherence model which models decoherence effect
caused by various decohereing sources in a quantum system through a nonlinear
coupling between the system and its environment, and apply it to investigating
decoherence in nonclassical motional states of a single trapped ion. We obtain
an exactly analytic solution of the model and find very good agreement with
experimental results for the population decay rate of a single trapped ion
observed in the NIST experiments by Meekhof and coworkers (D. M. Meekhof, {\it
et al.}, Phys. Rev. Lett. {\bf 76}, 1796 (1996)).Comment: 5 pages, Revte
Strong Casimir force reduction through metallic surface nanostructuring
The Casimir force between bodies in vacuum can be understood as arising from
their interaction with an infinite number of fluctuating electromagnetic
quantum vacuum modes, resulting in a complex dependence on the shape and
material of the interacting objects. Becoming dominant at small separations,
the force plays a significant role in nanomechanics and object manipulation at
the nanoscale, leading to a considerable interest in identifying structures
where the Casimir interaction behaves significantly different from the
well-known attractive force between parallel plates. Here we experimentally
demonstrate that by nanostructuring one of the interacting metal surfaces at
scales below the plasma wavelength, an unexpected regime in the Casimir force
can be observed. Replacing a flat surface with a deep metallic lamellar grating
with sub-100 nm features strongly suppresses the Casimir force and for large
inter-surfaces separations reduces it beyond what would be expected by any
existing theoretical prediction.Comment: 11 pages, 8 figure
The Critical Behaviour of the Spin-3/2 Blume-Capel Model in Two Dimensions
The phase diagram of the spin-3/2 Blume-Capel model in two dimensions is
explored by conventional finite-size scaling, conformal invariance and Monte
Carlo simulations. The model in its -continuum Hamiltonian version is
also considered and compared with others spin-3/2 quantum chains. Our results
indicate that differently from the standard spin-1 Blume-Capel model there is
no multicritical point along the order-disorder transition line. This is in
qualitative agreement with mean field prediction but in disagreement with
previous approximate renormalization group calculations. We also presented new
results for the spin-1 Blume-Capel model.Comment: latex 18 pages, 4 figure
Nanospintronics with carbon nanotubes
One of the actual challenges of spintronics is the realization of a
spin-transistor allowing to control spin transport through an electrostatic
gate. In this review, we report on different experiments which demonstrate a
gate control of spin transport in a carbon nanotube connected to ferromagnetic
leads. We also discuss some theoretical approaches which can be used to analyze
spin transport in these systems. We emphasize the roles of the gate-tunable
quasi-bound states inside the nanotube and the coherent spin-dependent
scattering at the interfaces between the nanotube and its ferromagnetic
contacts.Comment: 35 pages, 15 figures, some figures in gi
The variable finesse locking technique
Virgo is a power recycled Michelson interferometer, with 3 km long Fabry-Perot cavities in the arms. The locking of the interferometer has been obtained with an original lock acquisition technique. The main idea is to lock the instrument away from its working point. Lock is obtained by misaligning the power recycling mirror and detuning the Michelson from the dark fringe. In this way, a good fraction of light escapes through the antisymmetric port and the power build-up inside the recycling cavity is extremely low. The benefit is that all the degrees of freedom are controlled when they are almost decoupled, and the linewidth of the recycling cavity is large. The interferometer is then adiabatically brought on to the dark fringe. This technique is referred to as variable finesse, since the recycling cavity is considered as a variable finesse Fabry-Perot. This technique has been widely tested and allows us to reach the dark fringe in few minutes, in an essentially deterministic way
A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo
We present a method to search for transient GWs using a network of detectors
with different spectral and directional sensitivities: the interferometer Virgo
and the bar detector AURIGA. The data analysis method is based on the
measurements of the correlated energy in the network by means of a weighted
cross-correlation. To limit the computational load, this coherent analysis step
is performed around time-frequency coincident triggers selected by an excess
power event trigger generator tuned at low thresholds. The final selection of
GW candidates is performed by a combined cut on the correlated energy and on
the significance as measured by the event trigger generator. The method has
been tested on one day of data of AURIGA and Virgo during September 2005. The
outcomes are compared to the results of a stand-alone time-frequency
coincidence search. We discuss the advantages and the limits of this approach,
in view of a possible future joint search between AURIGA and one
interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7
Proceeding
Pseudotumoral tophaceous involvement of the Achilles paratenon
Gout is the most common form of microcrystalline arthropathy which usually does not pose a diagnostic challenge when patients have typical presentation, appropriate biochemical picture and classical radiographic appearance. However, formation of gouty tophi in unusual locations and with atypical presentations may mislead clinicians and radiologists, thereby justifying gout nickname as the “great mimicker”. When interpreting images of tendon related masses, radiologists should be aware of gouty tophi as a possible differential given its variable and nonspecific imaging appearance. In this article, we present a case of a patient with a painless tophaceous gout nodule, adjacent to the Achilles tendon
- …