711 research outputs found
Horizontal flow fields observed in Hinode G-band images II. Flow fields in the final stages of sunspot decay
We present a subset of multi-wavelengths observations obtained with the
Japanese Hinode mission, the Solar Dynamics Observatory (SDO), and the Vacuum
Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain during the
time period from 2010 November 18-23. Horizontal proper motions were derived
from G-band and Ca II H images, whereas line-of-sight velocities were extracted
from VTT Echelle H-alpha 656.28 nm spectra and Fe I 630.25 nm spectral data of
the Hinode/Spectro-Polarimeter, which also provided three-dimensional magnetic
field information. The Helioseismic and Magnetic Imager on board SDO provided
continuum images and line-of-sight magnetograms as context for the
high-resolution observations for the entire disk passage of the active region.
We have performed a quantitative study of photospheric and chromospheric flow
fields in and around decaying sunspots. In one of the trailing sunspots of
active region NOAA 11126, we observed moat flow and moving magnetic features
(MMFs), even after its penumbra had decayed. We also noticed a superpenumbral
structure around this pore. MMFs follow well-defined, radial paths from the
spot all the way to the border of a supergranular cell surrounding the spot. In
contrast, flux emergence near the other sunspot prevented it from establishing
such well ordered flow patterns, which could even be observed around a tiny
pore of just 2 Mm diameter. After the disappearance of the sunspots/pores a
coherent patch of abnormal granulation remained at their location, which was
characterized by more uniform horizontal proper motions, low divergence values,
and diminished photospheric Doppler velocities. This region, thus, differs
significantly from granulation and other areas covered by G-band bright points.
We conclude that this peculiar flow pattern is a signature of sunspot decay and
the dispersal of magnetic flux.Comment: 13 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
The effect of the solar corona on the attenuation of small-amplitude prominence oscillations. I. Longitudinal magnetic field
Context. One of the typical features shown by observations of solar
prominence oscillations is that they are damped in time and that the values of
the damping times are usually between one and three times the corresponding
oscillatory period. However, the mechanism responsible for the attenuation is
still not well-known. Aims. Thermal conduction, optically thin or thick
radiation and heating are taken into account in the energy equation, and their
role on the attenuation of prominence oscillations is evaluated. Methods. The
dispersion relation for linear non-adiabatic magnetoacoustic waves is derived
considering an equilibrium made of a prominence plasma slab embedded in an
unbounded corona. The magnetic field is orientated along the direction parallel
to the slab axis and has the same strength in all regions. By solving the
dispersion relation for a fixed wavenumber, a complex oscillatory frequency is
obtained, and the period and the damping time are computed. Results. The effect
of conduction and radiation losses is different for each magnetoacoustic mode
and depends on the wavenumber. In the observed range of wavelengths the
internal slow mode is attenuated by radiation from the prominence plasma, the
fast mode by the combination of prominence radiation and coronal conduction and
the external slow mode by coronal conduction. The consideration of the external
corona is of paramount importance in the case of the fast and external slow
modes, whereas it does not affect the internal slow modes at all. Conclusions.
Non-adiabatic effects are efficient damping mechanisms for magnetoacoustic
modes, and the values of the obtained damping times are compatible with those
observed.Comment: Accepted in A&
[Obras]
Copia digital. Valladolid : Junta de Castilla y León. ConsejerÃa de Cultura y Turismo, 2009-2010Marca tip. en última p.Sign.: A-Z4, 2A-2Z4, 3A-3I4Port. grab. calc
MHD waves in sunspots
The review addresses the spatial frequency morphology of sources of sunspot
oscillations and waves, including their localization, size, oscillation
periods, height localization with the mechanism of cut-off frequency that forms
the observed emission variability. Dynamic of sunspot wave processes, provides
the information about the structure of wave fronts and their time variations,
investigates the oscillation frequency transformation depending on the wave
energy is shown. The initializing solar flares caused by trigger agents like
magnetoacoustic waves, accelerated particle beams, and shocks are discussed.
Special attention is paid to the relation between the flare reconnection
periodic initialization and the dynamics of sunspot slow magnetoacoustic waves.
A short review of theoretical models of sunspot oscillations is provided.Comment: 20 pages, 6 figures, Chapter in AGU Monograph (in press), Review
articl
Features of spatial distribution of oscillations in faculae regions
We found that oscillations of LOS velocity in H-alpha are different for
various parts of faculae regions. Power spectra show that the contribution of
low-frequency modes (1.2 - 2 mHz) increase at the network boundaries. Three and
five- minute periods dominate inside cells. The spectra of photosphere and
chromosphere LOS velocity oscillations differ for most faculae. On the other
hand, we detected several cases where propagating oscillations in faculae were
manifest with a five-minute period. Their initiation point on spatial-temporal
diagrams coincided with the local maximum of the longitudinal magnetic field.Comment: 6 pages, 4 figure
The oxygen isotope evolution of parent body aqueous solutions as recorded by multiple carbonate generations in the Lonewolf Nunataks 94101 CM2 carbonaceous chondrite
The CM2 carbonaceous chondrite LON 94101 contains aragonite and two generations of calcite that provide snapshots of the chemical and isotopic evolution of aqueous solutions during parent body alteration. Aragonite was the first carbonate to crystallize. It is rare, heterogeneously distributed within the meteorite matrix, and its mean oxygen isotope values are δ18O 39.9±0.6‰, Δ17O -0.3±1.0‰ (1σ). Calcite precipitated very soon afterwards, and following a fall in solution Mg/Ca ratios, to produce small equant grains with a mean oxygen isotope value of δ18O 37.5±0.7‰, Δ17O 1.4±1.1‰ (1σ). These grains were partially or completely replaced by serpentine and tochilinite prior to precipitation of the second generation of calcite, which occluded an open fracture to form a millimeter-sized vein, and replaced anhydrous silicates within chondrules and the matrix. The vein calcite has a mean composition of δ18O 18.4±0.3‰, Δ17O -0.5±0.5‰ (1σ). Petrographic and isotopic results therefore reveal two discrete episodes of mineralization that produced Ca-carbonates with contrasting δ18O, but whose Δ17O values are indistinguishable within error. The aragonite and equant calcite crystallized over a relatively brief period early in the aqueous alteration history of the parent body, and from static fluids that were evolving chemically in response to mineral dissolution and precipitation. The second calcite generation crystallized from solutions of a lower Δ17O, and a lower δ18O and/or higher temperature, which entered LON 9410 via a fracture network. As two generations of calcite whose petrographic characteristics and oxygen isotopic compositions are similar to those in LON 94101 occur in at least one other CM2, multiphase carbonate mineralization could be the typical outcome of the sequence of chemical reactions during parent body aqueous alteration. It is equally possible however that the second generation of calcite in formed in response to an event such as impact fracturing and concomitant fluid mobilisation that affected a large region of the common parent body of several CM2 meteorites. These findings show that integrated petrographic, chemical and isotopic studies can provide new insights into the mechanisms of parent body alteration including the spatial and temporal dynamics of the aqueous system
A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph
A wavelength calibration system based on a laser frequency comb (LFC) was
developed in a co-operation between the Kiepenheuer-Institut f\"ur
Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\"ur Quantenoptik,
Garching, Germany for permanent installation at the German Vacuum Tower
Telescope (VTT) on Tenerife, Canary Islands. The system was installed
successfully in October 2011. By simultaneously recording the spectra from the
Sun and the LFC, for each exposure a calibration curve can be derived from the
known frequencies of the comb modes that is suitable for absolute calibration
at the meters per second level. We briefly summarize some topics in solar
physics that benefit from absolute spectroscopy and point out the advantages of
LFC compared to traditional calibration techniques. We also sketch the basic
setup of the VTT calibration system and its integration with the existing
echelle spectrograph.Comment: 9 pages, 2 figures; Solar Physics 277 (2012
Solar velocity references from 3D HD photospheric models
The measurement of Doppler velocities in spectroscopic solar observations
requires a reference for the local frame of rest. The rotational and radial
velocities of the Earth and the rotation of the Sun introduce velocity offsets
in the observations. Normally, good references for velocities are missing (e.g.
telluric lines), especially in filter-based spectropolarimetric observations.
We determine an absolute reference for line-of-sight velocities measured from
solar observations for any heliocentric angle, calibrating the convective line
shift of spatially-averaged profiles on quiet sun from a 3D hydrodynamical
simulation. This method works whenever there is quiet sun in the field-of-view,
and it has the advantage of being relatively insensitive to uncertainties in
the atomic data. We carry out radiative transfer computations in LTE for
selected C I and Fe I lines, whereas the Ca II infrared lines are synthesized
in non-LTE. The degree of asymmetry and the line shifts, however, show a clear
dependence on the heliocentric angle and the properties of the lines. The
profiles at \mu = 1 are compared with observed profiles to prove their
reliability, and they are tested against errors induced by the LTE
calculations, inaccuracies in the atomic data and the 3D simulation.
Theoretical quiet-sun profiles of lines commonly used by solar observers are
provided to the community. Those can be used as absolute references for
line-of-sight velocities. The limb effect is produced by the projection of the
3D atmosphere along the line of sight. We estimate the precision of the
disk-center line shifts to be approximately 50 m s^-1, but the off-center
profiles remain to be tested against observations.Comment: 9 pages, 9 figures, accepted for publication in Astronomy &
Astrophysic
- …