423 research outputs found
The linear dependence problem for power linear maps
AbstractLet Bl, l=1,âŠ,k, be mĂnl complex matrices and let x[l]âCnl,l=1,âŠ,k, be complex vector variables. We show that the components of the map H=(B1x[1])(d1)ââŻâ(Bkx[k])(dk) are linearly dependent over C if and only if det(B1B1â)(d1)ââŻâ(BkBkâ)(dk)=0, where â means the Hadamard product, Xâ and X(d) denote the conjugate transpose and the dth Hadamard power of a matrix X respectively. Connections are established between the Homogenous Dependence Problem (HDP(n,d)), which arises in the study of the Jacobian Conjecture, and the dependence problem for power linear maps (PLDP(n,d)). An algorithm is given to compute counterexamples to PLDP(n,d) from those to HDP(n,d), and counterexamples to PLDP(n,3) are obtained for all nâ©Ÿ67
Evidence for surprise minimization over value maximization in choice behavior
Classical economic models are predicated on the idea that the ultimate aim of choice is to maximize utility or reward. In contrast, an alternative perspective highlights the fact that adaptive behavior requires agents' to model their environment and minimize surprise about the states they frequent. We propose that choice behavior can be more accurately accounted for by surprise minimization compared to reward or utility maximization alone. Minimizing surprise makes a prediction at variance with expected utility models; namely, that in addition to attaining valuable states, agents attempt to maximize the entropy over outcomes and thus 'keep their options open'. We tested this prediction using a simple binary choice paradigm and show that human decision-making is better explained by surprise minimization compared to utility maximization. Furthermore, we replicated this entropy-seeking behavior in a control task with no explicit utilities. These findings highlight a limitation of purely economic motivations in explaining choice behavior and instead emphasize the importance of belief-based motivations
Two-Stage Robust Security-Constrained Unit Commitment with Optimizable Interval of Uncertain Wind Power Output
Because wind power spillage is barely considered, the existing robust unit commitment cannot accurately analyze the impacts of wind power accommodation on on/off schedules and spinning reserve requirements of conventional generators and cannot consider the network security limits. In this regard, a novel double-level robust security-constrained unit commitment formulation with optimizable interval of uncertain wind power output is firstly proposed in this paper to obtain allowable interval solutions for wind power generation and provide the optimal schedules for conventional generators to cope with the uncertainty in wind power generation. The proposed double-level model is difficult to be solved because of the invalid dual transform in solution process caused by the coupling relation between the discrete and continuous variables. Therefore, a two-stage iterative solution method based on Benders Decomposition is also presented. The proposed double-level model is transformed into a single-level and two-stage robust interval unit commitment model by eliminating the coupling relation, and then this two-stage model can be solved by Benders Decomposition iteratively. Simulation studies on a modified IEEE 26-generator reliability test system connected to a wind farm are conducted to verify the effectiveness and advantages of the proposed model and solution method
Analysis of Saharan dust intrusions into the Carpathian Basin (Central Europe) over the period of 1979â2011
Aeolian dust particles and dust storms play substantial role in climatic and other environmental processes of the Earth system. The largest and most important dust source areas are situated in the Sahara, from where several hundred thousand tons of mineral dust is emitted each year and transported towards the European continent. Here we show that 130 Saharan dust events (SDEs) reached the atmosphere of the Carpathian Basin from 1979 to 2011 by using the NASA's daily TOMS Aerosol Index data, satellite images and backward trajectory calculations of NOAA HYSPLIT model. Monthly trends of dust events demonstrate that the main period of dust transportation is in the spring, with a secondary maximum in the summer (in July and August). This seasonal distribution match well the seasonality of Saharan dust emissions. However synoptic meteorological conditions govern primarily the occurrence of long-range dust transport towards Central Europe. Based on their different meteorological backgrounds (geopotential field, wind vector and meridional flow), SDEs were classified into three main types. By using composite mean maps of synoptic situations and backward trajectories, the possible source areas have also been identified for the different types of events. Finally, we provide a short discussion on how the African mineral dust could contribute to the local aeolian sedimentation of the Carpathian Basin during the Plio-Pleistocene
The Quantum Internet
Quantum networks offer a unifying set of opportunities and challenges across
exciting intellectual and technical frontiers, including for quantum
computation, communication, and metrology. The realization of quantum networks
composed of many nodes and channels requires new scientific capabilities for
the generation and characterization of quantum coherence and entanglement.
Fundamental to this endeavor are quantum interconnects that convert quantum
states from one physical system to those of another in a reversible fashion.
Such quantum connectivity for networks can be achieved by optical interactions
of single photons and atoms, thereby enabling entanglement distribution and
quantum teleportation between nodes.Comment: 15 pages, 6 figures Higher resolution versions of the figures can be
downloaded from the following link:
http://www.its.caltech.edu/~hjkimble/QNet-figures-high-resolutio
Cavity Induced Interfacing of Atoms and Light
This chapter introduces cavity-based light-matter quantum interfaces, with a
single atom or ion in strong coupling to a high-finesse optical cavity. We
discuss the deterministic generation of indistinguishable single photons from
these systems; the atom-photon entanglement intractably linked to this process;
and the information encoding using spatio-temporal modes within these photons.
Furthermore, we show how to establish a time-reversal of the aforementioned
emission process to use a coupled atom-cavity system as a quantum memory. Along
the line, we also discuss the performance and characterisation of cavity
photons in elementary linear-optics arrangements with single beam splitters for
quantum-homodyne measurements.Comment: to appear as a book chapter in a compilation "Engineering the
Atom-Photon Interaction" published by Springer in 2015, edited by A.
Predojevic and M. W. Mitchel
The periodic table of data structures
http://sites.computer.org/debull/A18sept/p64.pdfPublished versio
Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection
Pigs are intermediate hosts for the generation of pandemic influenza virus. Thus, systematic surveillance of influenza viruses in pigs is a key measure for prewarning the emergence of the next pandemic influenza. Here, we identified a reassortant EA H1N1 virus possessing pdm/09 and TR-derived internal genes, termed as G4 genotype, which has become predominant in swine populations since 2016. Similar to pdm/09 virus, G4 viruses have all the essential hallmarks of a candidate pandemic virus. Of concern is that swine workers show elevated seroprevalence for G4 virus. Controlling the prevailing G4 EA H1N1 viruses in pigs and close monitoring in human populations, especially the workers in swine industry, should be urgently implemented.Pigs are considered as important hosts or âmixing vesselsâ for the generation of pandemic influenza viruses. Systematic surveillance of influenza viruses in pigs is essential for early warning and preparedness for the next potential pandemic. Here, we report on an influenza virus surveillance of pigs from 2011 to 2018 in China, and identify a recently emerged genotype 4 (G4) reassortant Eurasian avian-like (EA) H1N1 virus, which bears 2009 pandemic (pdm/09) and triple-reassortant (TR)-derived internal genes and has been predominant in swine populations since 2016. Similar to pdm/09 virus, G4 viruses bind to human-type receptors, produce much higher progeny virus in human airway epithelial cells, and show efficient infectivity and aerosol transmission in ferrets. Moreover, low antigenic cross-reactivity of human influenza vaccine strains with G4 reassortant EA H1N1 virus indicates that preexisting population immunity does not provide protection against G4 viruses. Further serological surveillance among occupational exposure population showed that 10.4% (35/338) of swine workers were positive for G4 EA H1N1 virus, especially for participants 18 y to 35 y old, who had 20.5% (9/44) seropositive rates, indicating that the predominant G4 EA H1N1 virus has acquired increased human infectivity. Such infectivity greatly enhances the opportunity for virus adaptation in humans and raises concerns for the possible generation of pandemic viruses
- âŠ