

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 426 (2007) 706-715

www.elsevier.com/locate/laa

The linear dependence problem for power linear maps *

Dayan Liu, Xiankun Du, Xiaosong Sun*

School of Mathematics, Jilin University, Changchun 130012, China

Received 16 February 2007; accepted 31 May 2007 Available online 16 June 2007 Submitted by R.A. Horn

Abstract

Let $B_l, l = 1, ..., k$, be $m \times n_l$ complex matrices and let $x^{[l]} \in \mathbb{C}^{n_l}, l = 1, ..., k$, be complex vector variables. We show that the components of the map $H = (B_1 x^{[1]})^{(d_1)} \circ \cdots \circ (B_k x^{[k]})^{(d_k)}$ are linearly dependent over \mathbb{C} if and only if $\det(B_1 B_1^*)^{(d_1)} \circ \cdots \circ (B_k B_k^*)^{(d_k)} = 0$, where \circ means the Hadamard product, X^* and $X^{(d)}$ denote the conjugate transpose and the *d*th Hadamard power of a matrix *X*, respectively. Connections are established between the Homogenous Dependence Problem (HDP(*n*, *d*)), which arises in the study of the Jacobian Conjecture, and the dependence problem for power linear maps (PLDP(*n*, *d*)). An algorithm is given to compute counterexamples to PLDP(*n*, *d*) from those to HDP(*n*, *d*), and counterexamples to PLDP(*n*, 3) are obtained for all $n \ge 67$. \mathbb{O} 2007 Elsevier Inc. All rights reserved.

AMS classification: 15A03; 14R15

Keywords: Jacobian conjecture; Power linear maps; Homogeneous dependence problem

1. Introduction

Let $F = (F_1, ..., F_n) : \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial map. F_i is called the *i*th component of F. The Jacobian Conjecture asserts that F is invertible if the Jacobian determinant of F is a

* Corresponding author.

0024-3795/\$ - see front matter $_{\odot}$ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2007.05.047

^{*} This work is supported by the National Natural Science Foundation of China (No. 10471055) and "985 Project" of Jilin University.

E-mail address: sunxs@jlu.edu.cn (X. Sun).

nonzero constant. Bass et al. [1] proved that it suffices to investigate the Jacobian conjecture for polynomial maps of the form F = x + H with JH nilpotent and H homogeneous of degree 3, i.e., each component H_i is either zero or homogeneous of degree 3. The studies of these special polynomial maps led to the following problem; see [18, Section 7.1], [3,4,11,16].

1.1. Homogeneous Dependence Problem (HDP(n, d))

Let $H = (H_1, \ldots, H_n) : \mathbb{C}^n \to \mathbb{C}^n$ be a homogeneous polynomial map of degree $d \ge 2$ such that JH is nilpotent. Does it follow that H_1, \ldots, H_n are linearly dependent over \mathbb{C} ; equivalently, are the rows of JH linearly dependent over \mathbb{C} ?

Affirmative answers are known when $n \le 3$, d arbitrary [3,19]; n = 4, d = 2 [13] or d = 3 [11]. Counterexamples are given by de Bondt for all dimensions $n \ge 5$, including counterexamples for all dimensions $n \ge 10$ with d = 3 [4]. But the following problems are still open:

Problem 1. Does HDP(n, 2) have an affirmative answer for all n > 4? See [16, Conjecture 11.3], [18, Question 7.4.16] or [4].

Problem 2. Does HDP(*n*, *d*) have an affirmative answer for all power linear maps: $H = ((\sum_{j=1}^{n} a_{1j} x_j)^d, \dots, (\sum_{j=1}^{n} a_{nj} x_j)^d)?$

In the paper, we solve Problem 2 and reduce Problem 1 to the case in which *H* is a power linear map of degree 2, which is also called a *quadratic linear map*. The motivation to consider the linear dependence problem for power linear maps is that Drużkowski [5] showed that it suffices to investigate the Jacobian Conjecture for all the maps $F = (x_1 + (\sum_{j=1}^n a_{1j}x_j)^3, \ldots, x_n + (\sum_{j=1}^n a_{nj}x_j)^3)$. To describe the structure of these maps, it is necessary to consider the linear dependence problem for power linear maps. For studies of power linear maps we refer the reader to [2,6,12,14].

For $m \times n$ complex matrices $A = (a_{ij})$ and $B = (b_{ij})$ and a positive integer d, the matrix $(a_{ij}b_{ij})$ is called the *Hadamard product* of A and B, denoted by $A \circ B$, and the matrix (a_{ij}^d) is called the *Hadamard power* of A, denoted by $A^{(d)}$. We view the vectors in \mathbb{C}^n as column vectors, and let $x = (x_1, \ldots, x_n)^T$, $F = (F_1, \ldots, F_n)^T$ and $A = (a_{ij})_{n \times n}$. Then $F = (x_1 + (\sum_{j=1}^n a_{1j}x_j)^d, \ldots, x_n + (\sum_{j=1}^n a_{nj}x_j)^d)^T$ can be written as $F_A(x) = x + (Ax)^{(d)}$, and $H = ((\sum_{j=1}^n a_{1j}x_j)^d, \ldots, (\sum_{j=1}^n a_{nj}x_j)^d)^T$ can be written as $H = (Ax)^{(d)}$.

Definition 1. The map $F_A(x) = x + (Ax)^{(d)}$, $d \ge 2$, is called a Drużkowski map of degree d, or a special power linear map of degree d, and $H = (Ax)^{(d)}$ is called a power linear map of degree d.

Problem 2 can be restated as follows,

1.2. Dependence Problem for Power Linear Maps (PLDP(n, d))

Let $H = (Ax)^{(d)} : \mathbb{C}^n \to \mathbb{C}^n$ be a power linear map such that JH is nilpotent. Does it follow that $H_1 = \left(\sum_{j=1}^n a_{1j}x_j\right)^d, \ldots, H_n = \left(\sum_{j=1}^n a_{nj}x_j\right)^d$ are linearly dependent over \mathbb{C} ; equivalently, are the rows of JH linearly dependent over \mathbb{C} ?

In general, we describe the linear dependency of the following maps:

$$H = (B_1 x^{[1]})^{(d_1)} \circ \cdots \circ (B_k x^{[k]})^{(d_k)}$$

where $B_l = (b_{ij}^{[l]})_{m \times n_l}$, l = 1, ..., k, are complex matrices, $x^{[l]} = (x_1^{[l]}, ..., x_{n_l}^{[l]})^T$, l = 1, ..., k, are complex vector variables, and $d_1, ..., d_k$ are positive integers. We show that the components of H are linearly dependent over \mathbb{C} if and only if $\det(B_1B_1^*)^{(d_1)} \circ \cdots \circ (B_kB_k^*)^{(d_k)} = 0$, where X^* denotes the conjugate transpose of a matrix X. In particular, the components of $H = (Ax)^{(d)}$ are linearly dependent if and only if $\det(AA^*)^{(d)} = 0$.

Using this result, we establish connections between HDP(n, d) and PLDP(n, d) though Gorni–Zampieri pairing. In fact, we prove that, for a fixed d, HDP(n, d) has an affirmative answer for all $n \ge 1$ if and only if PLDP(n, d) has an affirmative answer for all $n \ge 1$. As a consequence, counterexamples to PLDP(n, d) exist, too. An algorithm is given to compute counterexamples to PLDP(n_1 , d) from counterexamples to HDP(n_0 , d), and when d = 3, a concrete program is given and a counterexample to PLDP(67, 3) is computed explicitly, from which counterexamples to PLDP(n, 3) are derived for all $n \ge 67$.

2. Linear dependency of $H = (B_1 x^{[1]})^{(d_1)} \circ \cdots \circ (B_k x^{[k]})^{(d_k)}$

We start with some basic facts about Hadamard products of matrices; for details we refer the reader to [10, Chapter 5].

A Hermitian matrix *B* is said to be *positive semidefinite* if $x^*Bx \ge 0$ for all $x \in \mathbb{C}^n$. If $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$ are positive semidefinite then so is $A \circ B$. If, in addition, *B* is positive definite and *A* has no diagonal entry equal to 0, then $A \circ B$ is positive definite [10, Theorem 5.2.1].

Now we introduce the power similarity of power linear maps; for details see [12,14].

Let A and B be $n \times n$ complex matrices; let $F_A = x + (Ax)^{(d)}$ and $F_B = x + (Bx)^{(d)}$ be special power linear maps of degree $d \ge 2$. F_A is said to be *power similar* to F_B , denoted by $F_A \stackrel{d}{\sim} F_B$ (or $A \stackrel{d}{\sim} B$), if there exists some $T \in Gl_n(\mathbb{C})$ such that $F_B = T^{-1}F_AT$.

We can verify that $F_A \stackrel{d}{\sim} F_B$ (or $A \stackrel{d}{\sim} B$) if and only if there exists some $T \in Gl_n(\mathbb{C})$ such that $T^{-1}(ATx)^{(d)} = (Bx)^{(d)}$. The invariants of power similarity can be used to classify power linear maps. The dimension of span $(x \mapsto (Ax)^{(d)})$ is a power similarity invariant, where by the span of a map we mean the subspace spanned by the image of the map. Gorni and Tutaj-Gasińska [9] studied this invariant and conjectured that span $(x \mapsto (Ax)^{(d)}) = \operatorname{range}(AA^*)^{(d)}$. The authors proved the conjecture in [17] and recently Qiu and Zhan [15] generalized it to the following form.

Theorem 2 [15, Theorem 6]. Let B_l , l = 1, ..., k, be $n \times n$ complex matrices. Then

$$span\{(B_1x^{[1]}) \circ (B_2x^{[2]}) \circ \dots \circ (B_kx^{[k]}) | x^{[l]} \in \mathbb{C}^n\} \\ = range((B_1B_1^*) \circ (B_2B_2^*) \circ \dots \circ (B_kB_k^*)).$$

Theorem 2 can be generalized to the following form.

Theorem 3. Let B_l , l = 1, ..., k, be $n \times n$ complex matrices. Then

$$span\{(B_1x^{[1]})^{(d_1)} \circ (B_2x^{[2]})^{(d_2)} \circ \cdots \circ (B_kx^{[k]})^{(d_k)} | x^{[l]} \in \mathbb{C}^n\} \\ = range((B_1B_1^*)^{(d_1)} \circ (B_2B_2^*)^{(d_2)} \circ \cdots \circ (B_kB_k^*)^{(d_k)}).$$

Proof

$$span\{(B_1x^{[1]})^{(d_1)} \circ (B_2x^{[2]})^{(d_2)} \circ \cdots \circ (B_kx^{[k]})^{(d_k)} | x^{[l]} \in \mathbb{C}^n\} \\ = span\{(B_1B_1^*y^{[1]})^{(d_1)} \circ (B_2B_2^*y^{[2]})^{(d_2)} \circ \cdots \circ (B_kB_k^*y^{[k]})^{(d_k)} | y^{[l]} \in \mathbb{C}^n\} \\ = range((B_1B_1^*)^{(d_1)} \circ (B_2B_2^*)^{(d_2)} \circ \cdots \circ (B_kB_k^*)^{(d_k)}),$$

where the final step is by [15, Theorem 4]. \Box

Two sets of vectors $\alpha_1, \ldots, \alpha_s$ and β_1, \ldots, β_s are said to have *the same linear dependency* over \mathbb{C} , if for any $c_1, \ldots, c_s \in \mathbb{C}$, $c_1\alpha_1 + \cdots + c_s\alpha_s = 0$ if and only if $c_1\beta_1 + \cdots + c_s\beta_s = 0$.

Theorem 4. Let B_l , l = 1, ..., k, be $m \times n_l$ complex matrices. Let $x^{[l]} \in \mathbb{C}^{n_l}$, l = 1, ..., k, be complex vector variables and let $H = (B_1 x^{[1]})^{(d_1)} \circ \cdots \circ (B_k x^{[k]})^{(d_k)}$. Then the components of H have the same linear dependency as the rows of matrix $(B_1 B_1^*)^{(d_1)} \circ \cdots \circ (B_k B_k^*)^{(d_k)}$. In particular, the components of H are linearly dependent over \mathbb{C} if and only if det $(B_1 B_1^*)^{(d_1)} \circ \cdots \circ (B_k B_k^*)^{(d_k)} = 0$.

Proof. We can assume that $n_1 = \max\{n_1, \ldots, n_k\}$. Let $H = (H_1, \ldots, H_m)^T$. For any $c_1, \ldots, c_m \in \mathbb{C}$,

$$c_1H_1 + \dots + c_mH_m = 0 \iff (c_1, \dots, c_m)H = 0$$
$$\iff (c_1, \dots, c_m)((B_1x^{[1]})^{(d_1)} \circ \dots \circ (B_kx^{[k]})^{(d_k)}) = 0 \quad \forall x^{[l]} \in \mathbb{C}^{n_l}.$$

First we suppose that $m = n_1 = \cdots = n_k$. By Theorem 3,

$$(c_1,\ldots,c_m)\big(\big(B_1x^{[1]}\big)^{(d_1)}\circ\cdots\circ\big(B_kx^{[k]}\big)^{(d_k)}\big)=0\quad\forall x^{[l]}\in\mathbb{C}^{n_l}\\\iff(c_1,\ldots,c_m)\big(\big(B_1B_1^*\big)^{(d_1)}\circ\cdots\circ\big(B_kB_k^*\big)^{(d_k)}\big)=0,$$

and so,

$$c_1H_1 + \cdots + c_mH_m = 0 \iff (c_1, \ldots, c_m)\left(\left(B_1B_1^*\right)^{(d_1)} \circ \cdots \circ \left(B_kB_k^*\right)^{(d_k)}\right) = 0.$$

If $m \ge n_1$, let $B'_l = (B_l, 0_{m \times (m-n_l)})_{m \times m}$, $l = 1, \ldots, k$, and add new variables such that each $x^{[l]} \in \mathbb{C}^m$. Let $H' = (B'_1 x^{[1]})^{(d_1)} \circ \cdots \circ (B'_k x^{[k]})^{(d_k)}$. Then the components of H' have the same linear dependency as the rows of the matrix

$$(B'_1B'_1)^{(d_1)} \circ \cdots \circ (B'_kB'^*_k)^{(d_k)} = (B_1B_1^*)^{(d_1)} \circ \cdots \circ (B_kB_k^*)^{(d_k)}.$$

Since H = H', the components of H have the same linear dependency as the rows of the matrix $(B_1 B_1^*)^{(d_1)} \circ \cdots \circ (B_k B_k^*)^{(d_k)}$.

If
$$m < n_1$$
, let $B_l'' = {B_l \choose 0}_{n_1 \times n_l}$, $l = 1, ..., k$, and let $H'' = (B_1'' x^{[1]})^{(d_1)} \circ \cdots \circ (B_k'' x^{[k]})^{(d_k)}$.

By the proof of the case $m \ge n_1$, we know that the components of H'' have the same linear dependency as the rows of the matrix

$$(B_1''(B_1'')^*)^{(d_1)} \circ \cdots \circ (B_k''(B_k'')^*)^{(d_k)} = \begin{pmatrix} (B_1B_1^*)^{(d_1)} \circ \cdots \circ (B_kB_k^*)^{(d_k)} & 0 \\ 0 & 0 \end{pmatrix}.$$

Since the components of *H* are just the first *m* components of *H''*, the components of *H* have the same dependency as the rows of the matrix $(B_1 B_1^*)^{(d_1)} \circ \cdots \circ (B_k B_k^*)^{(d_k)}$. \Box

Corollary 5. Let $H = (Ax)^{(d)} : \mathbb{C}^n \to \mathbb{C}^n$ be a power linear map. Then the components of H have the same linear dependency as the rows of the matrix $(AA^*)^{(d)}$. In particular, the components of H are linearly dependent if and only if $\det(AA^*)^{(d)} = 0$.

Proposition 6. Let $H = (B_1 x^{[1]})^{(d_1)} \circ \cdots \circ (B_k x^{[k]})^{(d_k)}$ and let $H' = (B_1 x^{[1]})^{(d'_1)} \circ \cdots \circ (B_k x^{[k]})^{(d'_k)}$, where $1 \leq d'_l \leq d_l$, l = 1, ..., k. If the components of H are linearly dependent, then the components of H' are linearly dependent.

Proof. If B_l has a zero row for some l, the proposition is true. Now assume that each B_l has no zero row. Since the components of H are linearly dependent, by Theorem 4, det $(B_1B_1^*)^{(d_1)} \circ \cdots \circ (B_kB_k^*)^{(d_k)} = 0$. Suppose that the components of H' are linearly independent. Then det $(B_1B_1^*)^{(d'_1)} \circ \cdots \circ (B_kB_k^*)^{(d'_k)} \neq 0$. Since each $B_lB_l^*$ is positive semidefinite so is $P = (B_1B_1^*)^{(d'_1)} \circ \cdots \circ (B_kB_k^*)^{(d'_k)}$, and so P is positive definite. Since each B_l has no zero row, each $B_lB_l^*$ has no diagonal entry equal to 0, and so $Q = (B_1B_1^*)^{(d_1-d'_1)} \circ \cdots \circ (B_kB_k^*)^{(d_k-d'_k)}$ has no zero row. By [10, Theorem 5.2.1], $P \circ Q = (B_1B_1^*)^{(d_1)} \circ \cdots \circ (B_kB_k^*)^{(d_k)}$ is also positive definite, which contradicts det $(B_1B_1^*)^{(d_1)} \circ \cdots \circ (B_kB_k^*)^{(d_k)} = 0$. Thus, the components of H' are linearly dependent. \Box

Corollary 7. If the components of $(Ax)^{(d)}$ are linearly independent, then the components of $(Ax)^{(k)}$ are linearly independent for every integer $k \ge d$. In particular, if the rows of A are linearly independent, then so are the components of $(Ax)^{(k)}$ for every integer $k \ge 1$.

3. Connections between HDP(n, d) and PLDP(n, d)

To describe the connections between HDP(n, d) and PLDP(n, d), we need the following definition; see [18, Section 6.4] or [8].

Definition 8. Let $f = x + H : \mathbb{C}^n \to \mathbb{C}^n$, where *H* is homogeneous of degree $d \ge 2$ and $F_A = y + (Ay)^{(d)} : \mathbb{C}^N \to \mathbb{C}^N$ with N > n. We say that *f* and F_A are a Gorni–Zampieri pair through the matrices $B \in M_{n,N}(\mathbb{C})$ and $C \in M_{N,n}(\mathbb{C})$ if

1. $f(x) = BF_A(Cx), \forall x \in \mathbb{C}^n;$ 2. $BC = I_n;$ 3. ker $B = \ker A.$

Remark 9. Gorni and Zampieri [8] introduced the Gorni–Zampieri pair for d = 3, but it can be easily generalized to every integer $d \ge 2$. The crucial point is that any monomial of degree $d(\ge 2)$ can be written as a finite sum of polynomials $(q_1x_1 + \cdots + q_nx_n)^d$, where $q_i \in \mathbb{Q}$, $i = 1, \ldots, n$; see [18, Exercise 5.2.7].

We can verify that $f(x) = BF_A(Cx)$, $\forall x \in \mathbb{C}^n$, if and only if $H = B(ACx)^{(d)}$. Observe that $BC = I_n$ and ker B = ker A implies that rk B = rk C = rk A = n, where rk X denotes the rank of a matrix X.

For any $f = x + H : \mathbb{C}^n \to \mathbb{C}^n$, where *H* is homogeneous of degree $d \ge 2$, there exists some N > n and a special power linear map $F_A = x + (Ay)^{(d)} : \mathbb{C}^N \to \mathbb{C}^N$, such that *f* and F_A are a Gorni–Zampieri pair. Conversely, for any $F_A = y + (Ay)^{(d)} : \mathbb{C}^N \to \mathbb{C}^N$ with $n := \operatorname{rk} A < N$, there exists $f = x + H : \mathbb{C}^n \to \mathbb{C}^n$, where *H* is homogeneous of degree $d \ge 2$, such that *f* and F_A are a Gorni–Zampieri pair.

If f and F_A are a Gorni–Zampieri pair, then det Jf is a nonzero constant if and only if det JF_A is a nonzero constant; equivalently, JH is nilpotent if and only if $J(Ay)^{(d)}$ is nilpotent, and f is a polynomial automorphism if and only if F_A is a polynomial automorphism. For the details, see [18, Section 6.4].

Lemma 10 [18, Lemma 6.4.4]. Let $f = x + H : \mathbb{C}^n \to \mathbb{C}^n$ and $F_A = y + (Ay)^{(d)} : \mathbb{C}^N \to \mathbb{C}^N$ with N > n be a Gorni–Zampieri pair through the matrices $B \in M_{n,N}(\mathbb{C})$ and $C \in M_{N,n}(\mathbb{C})$. Then ACB = A.

Lemma 11. Let A, B be $n \times n$ complex matrices such that $A \stackrel{d}{\sim} B$ and let $T \in Gl_n(\mathbb{C})$ be such that $F_B = T^{-1}F_AT$. Then there exists some $P \in Gl_n(\mathbb{C})$ such that PAT = B.

Proof. Note that $F_B = T^{-1}F_AT$ implies that $T^{-1}(ATx)^{(d)} = (Bx)^{(d)}$. The system of linear equations ATx = 0 and Bx = 0 have the same set of solutions. Thus AT and B have the same row-reduced echelon form, whence there exists $P \in Gl_n(\mathbb{C})$ such that PAT = B. \Box

Lemma 12. Let A, B be $n \times n$ complex matrices such that $A \stackrel{d}{\sim} B$. Then $\operatorname{rk} A = \operatorname{rk} B$, $\operatorname{rk}(BB^*)^{(d)} = \operatorname{rk}(AA^*)^{(d)}$ and $\operatorname{rk} B(BB^*)^{(d)} = \operatorname{rk} A(AA^*)^{(d)}$.

Proof. By Lemma 11, there exists some $P \in Gl_n(\mathbb{C})$ such that PAT = B. Thus rk A = rk B. By Theorem 3, for any $n \times n$ complex matrix C, $range(CC^*)^{(d)} = span(x \mapsto (Cx)^{(d)})$, and so range $C(CC^*)^{(d)} = span(x \mapsto C(Cx)^{(d)})$. Then

$$rk(BB^*)^{(d)} = \dim span(x \longmapsto (Bx)^{(d)})$$

= dim span(x \low T^{-1}(ATx)^{(d)})
= dim span(x \low (ATx)^{(d)})
= dim span(x \low (Ax)^{(d)})
= rk(AA^*)^{(d)}

and

$$\operatorname{rk} B(BB^*)^{(d)} = \dim \operatorname{span}(x \longmapsto B(Bx)^{(d)})$$

= dim span $(x \longmapsto PATT^{-1}(ATx)^{(d)})$
= dim span $(x \longmapsto PA(ATx)^{(d)})$
= dim span $(x \longmapsto A(Ax)^{(d)})$
= rk $A(AA^*)^{(d)}$.

Proposition 13. Let $f = x + H : \mathbb{C}^n \to \mathbb{C}^n$ and $F_A = y + (Ay)^{(d)} : \mathbb{C}^N \to \mathbb{C}^N$ with N > n be a Gorni–Zampieri pair. Then the components of H are linearly dependent if and only if $\operatorname{rk} A(AA^*)^{(d)} < \operatorname{rk} A$.

Proof. There exist matrices $B \in M_{n,N}(\mathbb{C})$ and $C \in M_{N,n}(\mathbb{C})$ such that $f(x) = BF_A(Cx)$, $\forall x \in \mathbb{C}^n$, $BC = I_n$, and ker B = ker A. Then $H = B(ACx)^{(d)}$. By Lemma 10, ACB = A, so that $A^T = B^T C^T A^T$, which implies that range $A^T \subseteq \text{range } B^T$. Since rk A = rk B = n, range $A^T = \text{range } B^T$. Suppose that the components of H are linearly dependent. Then there exists a nonzero vector $\alpha = (a_1, \ldots, a_n)^T \in \mathbb{C}^n$ such that $\alpha^T H = 0$, i.e., $\alpha^T B(ACx)^{(d)} = 0$. We have $\alpha^T B \neq 0$, since rk B = n. Because range $A^T = \text{range } B^T$, there exists a nonzero vector $\beta = (b_1, \ldots, b_N)^T \in \mathbb{C}^N$ such that $\beta^T A = \alpha^T B$. Consequently $\beta^T A(ACx)^{(d)} = 0$, whence $\beta^T A(ACBy)^{(d)} = 0$, $\forall y \in \mathbb{C}^N$, and so $\beta^T A(Ay)^{(d)} = 0$. By Corollary 5, $\beta^T A(AA^*)^{(d)} = 0$. Thus $\text{rk } A(AA^*)^{(d)} < \text{rk } A$. Conversely, suppose that $\beta^T A(AA^*)^{(d)} = 0$ and $\beta^T A \neq 0$. Since $\text{range } A^T = \text{range } B^T$, there exists a nonzero vector $\beta = (b_1, \ldots, b_N) \in \mathbb{C}^N$ such that $\beta^T A(AA^*)^{(d)} = 0$ and $\beta^T A \neq 0$. Since $\text{range } A^T = \text{range } B^T$, there exists a nonzero vector $\alpha = (a_1, \ldots, a_n)^T \in \mathbb{C}^n$ such that $\beta^T A = \alpha^T B$. Thus $\alpha^T B(AA^*)^{(d)} = 0$. By Corollary 5, $\alpha^T B(AY)^{(d)} = 0$, and so $\alpha^T B(ACx)^{(d)} = 0$, i.e., $\alpha^T H = 0$. \Box

Theorem 14. Let $f = x + H : \mathbb{C}^{n_0} \to \mathbb{C}^{n_0}$ and $F_A = y + (Ay)^{(d)} : \mathbb{C}^N \to \mathbb{C}^N$ be a Gorni– Zampieri pair. If H is a counterexample to HDP (n_0, d) with $\operatorname{rk}(AA^*)^{(d)} = n_1$, then there exists a counterexample to PLDP (n_1, d) . Furthermore, if $2n_0 \leq n_1$, then there exist counterexamples to PLDP(k, d) for all $k \geq n_1$.

Proof. Suppose $f = x + H : \mathbb{C}^{n_0} \to \mathbb{C}^{n_0}$, where *H* is homogeneous of degree *d*, such that *JH* is nilpotent and the components of *H* are linearly independent. By Proposition 13, rk $A(AA^*)^{(d)} =$ rk $A = n_0$. Let rk $(AA^*)^{(d)} = n_1$. Then $n_0 \leq n_1 \leq N$. Let A_i be the *i*th row of *A*. Then $(Ay)^{(d)} = ((A_1y)^d, \dots, (A_Ny)^d)^T$.

If $n_1 = N$, then by Corollary 5 the components of $(Ay)^{(d)}$ are linearly independent, which implies that PLDP (n_1, d) has a negative answer.

If $n_1 < N$, after a suitable permutation we may assume that $(A_1y)^d, \ldots, (A_{n_1}y)^d$ are linearly independent, and there exists some $P \in Gl_N(\mathbb{C})$ such that

$$P^{-1}(Ay)^{(d)} = ((A_1y)^d, \dots, (A_{n_1}y)^d, 0, \dots, 0)^{\mathrm{T}} = ((A_1^{\mathrm{T}}, \dots, A_{n_1}^{\mathrm{T}}, 0)^{\mathrm{T}}y)^{(d)}.$$

Let $U = (A_1^{\mathsf{T}}, \dots, A_{n_1}^{\mathsf{T}}, 0)^{\mathsf{T}} P$. It can be written as $U = \begin{pmatrix} W & V \\ 0 & 0 \end{pmatrix}$, where $W \in M_{n_1}(\mathbb{C})$. Since $P^{-1}(APy)^{(d)} = (Uy)^{(d)}, A \stackrel{d}{\sim} U$. Thus

$$\mathbf{k} U = \mathbf{rk} A = \mathbf{rk} A (AA^*)^{(d)} = \mathbf{rk} U (UU^*)^{(d)} = \mathbf{rk} W (WW^* + VV^*)^{(d)} \leq \mathbf{rk} W$$

whence rk U = rk W. It follows that each column of V is a linear combination of the columns of W. Therefore, there exists a matrix R such that V = WR. Let $S = \begin{pmatrix} I_{n_1} & -R \\ 0 & I_{N-n_1} \end{pmatrix}$. Then

$$S^{-1}(USy)^{(d)} = S^{-1} \left(\begin{pmatrix} W & 0 \\ 0 & 0 \end{pmatrix} y \right)^{(d)} = \left(\begin{pmatrix} W & 0 \\ 0 & 0 \end{pmatrix} y \right)^{(d)}$$

which implies that $U \stackrel{d}{\sim} \begin{pmatrix} W & 0 \\ 0 & 0 \end{pmatrix}$. Consequently, $A \stackrel{d}{\sim} \begin{pmatrix} W & 0 \\ 0 & 0 \end{pmatrix}$. It follows from Lemma 12 that

$$\operatorname{rk}\left(\begin{pmatrix} W & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} W & 0\\ 0 & 0 \end{pmatrix}^*\right)^{(d)} = \operatorname{rk} (AA^*)^{(d)} = n_1.$$

Thus $\operatorname{rk}(WW^*)^{(d)} = n_1$. By Corollary 5, the components of $(Wx)^{(d)} : \mathbb{C}^{n_1} \to \mathbb{C}^{n_1}$ are linearly independent. Since $J(Ay)^{(d)}$ is nilpotent and $A \stackrel{d}{\sim} \begin{pmatrix} W & 0 \\ 0 & 0 \end{pmatrix}$, we have $J(Wx)^{(d)}$ is nilpotent. Consequently, there exists a counterexample to PLDP (n_1, d) .

Now suppose $2n_0 \leq n_1$. Since rk $W = \text{rk } A = n_0$, there exists some $T \in Gl(n_1)$ such that W = (W', 0)T, where W' is an $n_1 \times n_0$ matrix. For any integer $n_1 < m \leq 2n_1$, let W'' be the matrix consisting of the first $m - n_1$ rows of W'. Let $V' = \begin{pmatrix} W'_{n_1 \times n_0} & 0_{n_1 \times (n_1 - n_0)} & 0 \\ 0_{(m-n_1) \times (n_1 - n_0)} & W''_{(m-n_1) \times n_0} & 0 \end{pmatrix}_{m \times m}$, and let $V = V' \begin{pmatrix} T & 0 \\ 0 & I_{m-n_1} \end{pmatrix}$. Then $V = \begin{pmatrix} W & 0 \\ (0, W'')T & 0 \end{pmatrix}$. Since $J(Wx)^{(d)}$ is nilpotent, $J(Vx)^{(d)}$ is nilpotent. Because the components of $(Wx)^{(d)}$ are linearly independent, so are the components of $(W'x)^{(d)}$ and $(W''x)^{(d)}$. Since $2n_0 \leq n_1, n_1 - n_0 \geq n_0$, whence the components of $\begin{pmatrix} W' & 0 \\ 0 & W'' \end{pmatrix} x \end{pmatrix}^{(d)}$ are linearly independent, and so are the components of $(V'x)^{(d)}$. Since $\begin{pmatrix} T & 0 \\ 0 & I \end{pmatrix} \in Gl(m)$, we see that the components of $(Vx)^{(d)}$ and $(V'x)^{(d)}$ have the same linearly dependency. Hence the components of $(Vx)^{(d)}$ are linearly independent. Thus there exist counterexamples to PLDP(m, d) for all $n_1 < m \leq 2n_1$. Let $V_i = \begin{pmatrix} W & \ddots & V \\ W & V \\ W & V \end{pmatrix}$, $i \geq 1$. $J(V_ix)^{(d)}$ is nilpotent, but the components of all $n_1 < m \leq 2n_1$. Let $V_i = \begin{pmatrix} W & \ddots & V \\ W & V \\ W & V \end{pmatrix}$, $i \geq 1$. $J(V_ix)^{(d)}$ is nilpotent, but the components of Vx and Vx.

of $(V_i x)^{(d)}$ are linearly independent. Thus there exist counterexamples to PLDP(m, d) for all $(i + 1)n_1 < m \le (i + 2)n_1$, and so there exist counterexamples to PLDP(k, d) for all $k \ge n_1$. \Box

Corollary 15. For a fixed integer $d \ge 2$, PLDP(n, d) has an affirmative answer for all integers $n \ge 1$ if and only if HDP(n, d) has an affirmative answer for all integers $n \ge 1$.

Remark 16. For Problem 1, it is sufficient to investigate all the quadratic linear maps, i.e., power linear maps of degree 2.

4. Counterexamples to PLDP(*n*, *d*)

By Theorem 14, counterexamples to $PLDP(n_1, d)$ can be obtained using counterexamples to $HDP(n_0, d)$. Here is an algorithm to do so.

Step 1: Let f = x + H be such that H is a counterexample to HDP (n_0, d) . Calculate F_A from f.

Step 2: X := the transpose of $(AA^*)^{(d)}$, $n_1 :=$ rk X. Compute the row-reduced echelon form of X and denote it by Q_0 . Let (i_1, \ldots, i_{n_1}) be the indices of the columns of Q_0 in which the leading 1's lie.

 Q_1 := the transpose of Q_0 . Then the rows of Q_1 have the same linear dependency as the rows of $X := (AA^*)^{(d)}$, and so they have the same linear dependency as the components of H.

 Q_2 := the matrix obtained by substituting zero rows for the i_1, \ldots, i_{n_1} rows of Q_1 . $P := Q_2 + I$. Then

$$P^{-1}(Ay)^{(d)} = (0, \dots, (A_{i_1}y)^{(d)}, \dots, (A_{i_{n_1}}y)^{(d)}), \dots, 0).$$

 $A_0 :=$ the i_1, \ldots, i_{n_1} rows of A.

W := the i_1, \ldots, i_{n_1} columns of $A_0 P$.

Then $J(Wx)^{(d)}$ is nilpotent but the components of the power linear map $(Wx)^{(d)} : \mathbb{C}^{n_1} \to \mathbb{C}^{n_1}$ are linearly independent.

When d = 3, we give a Mathematica routine (version 5.1) to compute counterexamples to PLDP(n_1 , d) using counterexamples to HDP(n_0 , d). It uses the function **makePairing** (supplied by Wolfram Research Inc.; see [7]), which takes f = x + H and returns matrices A, B, and C such that f and F_A are a Gorni–Zampieri pair though B and C.

```
<< LinearAlgebra 'MatrixManipulation';
Remove["'*"];
a = makePairing[f][[1]];
(* makePairing[f] returns a list, the first
element of which is A *)
m = Length[a];
Print["N=", m];
Print["A=",a//MatrixForm];
x0 = a.Transpose[a];
x = Transpose[x0*x0*x0];
n1 = MatrixRank[x];
Print["n1=", n1];
q1 = Transpose [RowReduce [x]];
r = Table[0, {n1}];
For[i = 1; j = 1, i \le m, i++,
    If[TakeRows[q1, {i, i}] == TakeRows[IdentityMatrix[m], {j, j}],
    r = ReplacePart[r, i, j]; q1 = ReplacePart[q1, 0, {i, j}]; j++;]];
p = q1 + IdentityMatrix[m];
w1 = a[[r, All]].p;
w = w1[[All, r]];
Print["W=",w // MatrixForm];
```

In the following example, a counterexample to PLDP(67, 3) is computed explicitly from a counterexample to HDP(10, 3) given by M. de Bondt in [4], and counterexamples to PLDP(n, 3) are obtained for all $n \ge 67$.

Example 17. Let

$$H_{A,B}^{[n]} = \begin{pmatrix} B(Ax_1 - Bx_2) \\ A(Ax_1 - Bx_2) \\ B(Ax_3 - Bx_4) \\ A(Ax_3 - Bx_4) \\ \vdots \\ B(Ax_{n-1} - Bx_n) \\ A(Ax_{n-1} - Bx_n) \end{pmatrix} (n \text{ even}),$$

where A and B are symbolic constants.

$$a = x_1 x_4 - x_2 x_3, \quad b = x_3 x_6 - x_4 x_5.$$

Let $H = (H_{x_9,x_{10}}^{(6)}, x_9a, x_9b, x_8a - x_7b, x_9^3) : \mathbb{C}^{10} \to \mathbb{C}^{10}$. Then *H* is a counterexample to HDP(10, 3); see [4, Corollary 3.4].

Now, let f = x + H.

$$\begin{split} f &= \text{Function}[\{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10\}, \\ \{x1 + x1 * x9 * x10 - x2 * x10^2, x2 + x1 * x9^2 - x2 * x9 * x10, \\ x3 + x3 * x9 * x10 - x4 * x10^2, x4 + x3 * x9^2 - x4 * x9 * x10, \\ x5 + x5 * x9 * x10 - x6 * x10^2, x6 + x5 * x9^2 - x6 * x9 * x10, \\ x7 + x1 * x4 * x9 - x2 * x3 * x9, x8 + x3 * x6 * x9 - x4 * x5 * x9, \\ x9 + x1 * x4 * x8 - x2 * x3 * x8 - x3 * x6 * x7 + x4 * x5 * x7, x10 + x9^3]. \end{split}$$

Applying the previous program, we get N = 75, n1 = 67, and a 67×67 matrix W such that $(Wx)^{(3)}$ is a counterexample to PLDP(67, 3). Since $n_0 = 10$, $2n_0 \le n_1$, by Theorem 14, there exist counterexamples to PLDP(n, 3) for all $n \ge 67$.

References

- H. Bass, E. Connel, D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982) 287–330.
- [2] C.C. Cheng, Quadratic linear Keller maps, Linear Algebra Appl. 348 (2002) 203-207.
- [3] M. de Bondt, A. van den Essen, The Jacobian Conjecture: linear triangularization for homogeneous polynomial maps in dimension three, J. Algebra 294 (2005) 294–306.
- [4] M. de Bondt, Quasi-translations and counterexamples to the Homogeneous Dependence Problem, Proc. Amer. Math. Soc. 134 (2006) 2849–2856.
- [5] L.M. Drużkowski, An effective approach to the Jacobian conjecture, Math. Ann. 264 (1983) 303–313.
- [6] L.M. Drużkowski, The Jacobian Conjecture in case of rank or corank less than three, J. Pure Appl. Algebra 85 (1993) 233–244.
- [7] G. Gorni, A nonlinearizable cubic-linear mapping, in: E. Hubbers (Ed.), Conference on Polynomial Maps and the Jacobian Conjecture, University of Nebraska-Lincoln, May 9–10, 1997.
- [8] G. Gorni, G. Zampieri, On cubic-linear polynomial mappings, Indag. Math. 8 (4) (1997) 471-492.
- [9] G. Gorni, H. Tutaj-Gasińska, On the entrywise powers of matrices, Comm. Algebra 32 (2) (2004) 495-520.
- [10] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
- [11] E. Hubbers, Cubic similarity in dimension four, Master's thesis, University of Nijmegen, The Netherlands, 1994.
- [12] E. Hubbers, Nilpotent Jacobians, Ph.D. thesis, University of Nijmegen, The Netherlands, 1998.
- [13] G. Meisters, C. Olech, Strong nilpotence holds in dimension up to five only, Linear and Multilinear Algebra 30 (1991) 231–255.
- [14] G. Meisters, Power-similarity: summary of first results, in: Conference on Polynomial Automorphisms, the C.I.R.M. Luminy, France, October 12–16, 1992.
- [15] L. Qiu, X. Zhan, On the span of Hadamard products of vectors, Linear Algebra Appl. 422 (2007) 304–307.
- [16] K. Rusek, Polynomial automorphisms, preprint 456, Institute of Mathematics, Polish Academy of Sciences, IMPAN, sniadeckich 8, P.O. Box 137, 00-950 Warsaw, Poland, May 1989.
- [17] X. Sun, X. Du, D. Liu, On the range of a Hadamard power of a positive semidefinite matrix, Linear Algebra Appl. 416 (2006) 868–871.
- [18] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, vol. 190, Birkhäuser, Basel, Boston, Berlin, 2000.
- [19] D. Wright, The Jacobian Conjecture: linear triangularization for cubics in dimension three, Linear and Multilinear Algebra 34 (1993) 85–97.