The linear dependence problem for power linear maps ${ }^{*}$

Dayan Liu, Xiankun Du, Xiaosong Sun*
School of Mathematics, Jilin University, Changchun 130012, China
Received 16 February 2007; accepted 31 May 2007
Available online 16 June 2007
Submitted by R.A. Horn

Abstract

Let $B_{l}, l=1, \ldots, k$, be $m \times n_{l}$ complex matrices and let $x^{[l]} \in \mathbb{C}^{n_{l}}, l=1, \ldots, k$, be complex vector variables. We show that the components of the map $H=\left(B_{1} x^{[1]}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} x^{[k]}\right)^{\left(d_{k}\right)}$ are linearly dependent over \mathbb{C} if and only if $\operatorname{det}\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}=0$, where \circ means the Hadamard product, X^{*} and $X^{(d)}$ denote the conjugate transpose and the d th Hadamard power of a matrix X, respectively. Connections are established between the Homogenous Dependence Problem ($\operatorname{HDP}(n, d)$), which arises in the study of the Jacobian Conjecture, and the dependence problem for power linear maps $(\operatorname{PLDP}(n, d))$. An algorithm is given to compute counterexamples to $\operatorname{PLDP}(n, d)$ from those to $\operatorname{HDP}(n, d)$, and counterexamples to $\operatorname{PLDP}(n, 3)$ are obtained for all $n \geqslant 67$.

© 2007 Elsevier Inc. All rights reserved.

AMS classification: 15A03; 14R15

Keywords: Jacobian conjecture; Power linear maps; Homogeneous dependence problem

1. Introduction

Let $F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a polynomial map. F_{i} is called the i th component of F. The Jacobian Conjecture asserts that F is invertible if the Jacobian determinant of F is a

[^0]0024-3795/\$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.1aa.2007.05.047
nonzero constant. Bass et al. [1] proved that it suffices to investigate the Jacobian conjecture for polynomial maps of the form $F=x+H$ with $J H$ nilpotent and H homogeneous of degree 3, i.e., each component H_{i} is either zero or homogeneous of degree 3. The studies of these special polynomial maps led to the following problem; see [18, Section 7.1], [3,4,11,16].

1.1. Homogeneous Dependence Problem (HDP($n, d)$)

Let $H=\left(H_{1}, \ldots, H_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a homogeneous polynomial map of degree $d \geqslant 2$ such that $J H$ is nilpotent. Does it follow that H_{1}, \ldots, H_{n} are linearly dependent over \mathbb{C}; equivalently, are the rows of $J H$ linearly dependent over \mathbb{C} ?

Affirmative answers are known when $n \leqslant 3, d$ arbitrary [3,19]; $n=4, d=2$ [13] or $d=3$ [11]. Counterexamples are given by de Bondt for all dimensions $n \geqslant 5$, including counterexamples for all dimensions $n \geqslant 10$ with $d=3$ [4]. But the following problems are still open:

Problem 1. Does $\operatorname{HDP}(n, 2)$ have an affirmative answer for all $n>4$? See [16, Conjecture 11.3], [18, Question 7.4.16] or [4].

Problem 2. Does $\operatorname{HDP}(n, d)$ have an affirmative answer for all power linear maps: $H=$ $\left(\left(\sum_{j=1}^{n} a_{1 j} x_{j}\right)^{d}, \ldots,\left(\sum_{j=1}^{n} a_{n j} x_{j}\right)^{d}\right)$?

In the paper, we solve Problem 2 and reduce Problem 1 to the case in which H is a power linear map of degree 2, which is also called a quadratic linear map. The motivation to consider the linear dependence problem for power linear maps is that Drużkowski [5] showed that it suffices to investigate the Jacobian Conjecture for all the maps $F=\left(x_{1}+\left(\sum_{j=1}^{n} a_{1 j} x_{j}\right)^{3}, \ldots, x_{n}+\right.$ $\left(\sum_{j=1}^{n} a_{n j} x_{j}\right)^{3}$. To describe the structure of these maps, it is necessary to consider the linear dependence problem for power linear maps. For studies of power linear maps we refer the reader to [2,6,12,14].

For $m \times n$ complex matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ and a positive integer d, the matrix $\left(a_{i j} b_{i j}\right)$ is called the Hadamard product of A and B, denoted by $A \circ B$, and the matrix $\left(a_{i j}^{d}\right)$ is called the d th Hadamard power of A, denoted by $A^{(d)}$. We view the vectors in \mathbb{C}^{n} as column vectors, and let $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}, F=\left(F_{1}, \ldots, F_{n}\right)^{\mathrm{T}}$ and $A=\left(a_{i j}\right)_{n \times n}$. Then $F=\left(x_{1}+\right.$ $\left.\left(\sum_{j=1}^{n} a_{1 j} x_{j}\right)^{d}, \ldots, x_{n}+\left(\sum_{j=1}^{n} a_{n j} x_{j}\right)^{d}\right)^{\mathrm{T}}$ can be written as $F_{A}(x)=x+(A x)^{(d)}$, and $H=$ $\left(\left(\sum_{j=1}^{n} a_{1 j} x_{j}\right)^{d}, \ldots,\left(\sum_{j=1}^{n} a_{n j} x_{j}\right)^{d}\right)^{\mathrm{T}}$ can be written as $H=(A x)^{(d)}$.

Definition 1. The map $F_{A}(x)=x+(A x)^{(d)}, d \geqslant 2$, is called a Drużkowski map of degree d, or a special power linear map of degree d, and $H=(A x)^{(d)}$ is called a power linear map of degree d.

Problem 2 can be restated as follows,

1.2. Dependence Problem for Power Linear Maps $(\operatorname{PLDP}(n, d))$

Let $H=(A x)^{(d)}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a power linear map such that $J H$ is nilpotent. Does it follow that $H_{1}=\left(\sum_{j=1}^{n} a_{1 j} x_{j}\right)^{d}, \ldots, H_{n}=\left(\sum_{j=1}^{n} a_{n j} x_{j}\right)^{d}$ are linearly dependent over \mathbb{C}; equivalently, are the rows of $J H$ linearly dependent over \mathbb{C} ?

In general, we describe the linear dependency of the following maps:

$$
H=\left(B_{1} x^{[1]}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} x^{[k]}\right)^{\left(d_{k}\right)}
$$

where $B_{l}=\left(b_{i j}^{[l]}\right)_{m \times n_{l}}, l=1, \ldots, k$, are complex matrices, $x^{[l]}=\left(x_{1}^{[l]}, \ldots, x_{n_{l}}^{[l]}\right)^{\mathrm{T}}, l=1, \ldots, k$, are complex vector variables, and d_{1}, \ldots, d_{k} are positive integers. We show that the components of H are linearly dependent over \mathbb{C} if and only if $\operatorname{det}\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}=0$, where X^{*} denotes the conjugate transpose of a matrix X. In particular, the components of $H=(A x)^{(d)}$ are linearly dependent if and only if $\operatorname{det}\left(A A^{*}\right)^{(d)}=0$.

Using this result, we establish connections between $\operatorname{HDP}(n, d)$ and $\operatorname{PLDP}(n, d)$ though GorniZampieri pairing. In fact, we prove that, for a fixed $d, \operatorname{HDP}(n, d)$ has an affirmative answer for all $n \geqslant 1$ if and only if $\operatorname{PLDP}(n, d)$ has an affirmative answer for all $n \geqslant 1$. As a consequence, counterexamples to $\operatorname{PLDP}(n, d)$ exist, too. An algorithm is given to compute counterexamples to $\operatorname{PLDP}\left(n_{1}, d\right)$ from counterexamples to $\operatorname{HDP}\left(n_{0}, d\right)$, and when $d=3$, a concrete program is given and a counterexample to $\operatorname{PLDP}(67,3)$ is computed explicitly, from which counterexamples to $\operatorname{PLDP}(n, 3)$ are derived for all $n \geqslant 67$.

2. Linear dependency of $H=\left(B_{1} x^{[1]}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} x^{[k]}\right)^{\left(d_{k}\right)}$

We start with some basic facts about Hadamard products of matrices; for details we refer the reader to [10, Chapter 5].

A Hermitian matrix B is said to be positive semidefinite if $x^{*} B x \geqslant 0$ for all $x \in \mathbb{C}^{n}$. If $A=$ $\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{m \times n}$ are positive semidefinite then so is $A \circ B$. If, in addition, B is positive definite and A has no diagonal entry equal to 0 , then $A \circ B$ is positive definite [10, Theorem 5.2.1].

Now we introduce the power similarity of power linear maps; for details see [12,14].
Let A and B be $n \times n$ complex matrices; let $F_{A}=x+(A x)^{(d)}$ and $F_{B}=x+(B x)^{(d)}$ be special power linear maps of degree $d \geqslant 2 . F_{A}$ is said to be power similar to F_{B}, denoted by $F_{A} \stackrel{d}{\sim} F_{B}\left(\right.$ or $A \stackrel{d}{\sim} B$), if there exists some $T \in G l_{n}(\mathbb{C})$ such that $F_{B}=T^{-1} F_{A} T$.

We can verify that $F_{A} \stackrel{d}{\sim} F_{B}$ (or $A \stackrel{d}{\sim} B$) if and only if there exists some $T \in G l_{n}(\mathbb{C})$ such that $T^{-1}(A T x)^{(d)}=(B x)^{(d)}$. The invariants of power similarity can be used to classify power linear maps. The dimension of $\operatorname{span}\left(x \mapsto(A x)^{(d)}\right)$ is a power similarity invariant, where by the span of a map we mean the subspace spanned by the image of the map. Gorni and Tutaj-Gasińska [9] studied this invariant and conjectured that span $\left(x \mapsto(A x)^{(d)}\right)=\operatorname{range}\left(A A^{*}\right)^{(d)}$. The authors proved the conjecture in [17] and recently Qiu and Zhan [15] generalized it to the following form.

Theorem $2\left[15\right.$, Theorem 6]. Let $B_{l}, l=1, \ldots, k$, be $n \times n$ complex matrices. Then

$$
\begin{aligned}
& \operatorname{span}\left\{\left(B_{1} x^{[1]}\right) \circ\left(B_{2} x^{[2]}\right) \circ \cdots \circ\left(B_{k} x^{[k]}\right) \mid x^{[l]} \in \mathbb{C}^{n}\right\} \\
& \quad=\operatorname{range}\left(\left(B_{1} B_{1}^{*}\right) \circ\left(B_{2} B_{2}^{*}\right) \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)\right) .
\end{aligned}
$$

Theorem 2 can be generalized to the following form.
Theorem 3. Let $B_{l}, l=1, \ldots, k$, be $n \times n$ complex matrices. Then

$$
\begin{aligned}
& \operatorname{span}\left\{\left(B_{1} x^{[1]}\right)^{\left(d_{1}\right)} \circ\left(B_{2} x^{[2]}\right)^{\left(d_{2}\right)} \circ \cdots \circ\left(B_{k} x^{[k]}\right)^{\left(d_{k}\right)} \mid x^{[l]} \in \mathbb{C}^{n}\right\} \\
& \quad=\operatorname{range}\left(\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ\left(B_{2} B_{2}^{*}\right)^{\left(d_{2}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}\right) .
\end{aligned}
$$

Proof

$$
\begin{aligned}
& \operatorname{span}\left\{\left(B_{1} x^{[1]}\right)^{\left(d_{1}\right)} \circ\left(B_{2} x^{[2]}\right)^{\left(d_{2}\right)} \circ \cdots \circ\left(B_{k} x^{[k]}\right)^{\left(d_{k}\right)} \mid x^{[l]} \in \mathbb{C}^{n}\right\} \\
& \quad=\operatorname{span}\left\{\left(B_{1} B_{1}^{*} y^{[1]}\right)^{\left(d_{1}\right)} \circ\left(B_{2} B_{2}^{*} y^{[2]}\right)^{\left(d_{2}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*} y^{[k]}\right)^{\left(d_{k}\right)} \mid y^{[l]} \in \mathbb{C}^{n}\right\} \\
& \quad=\operatorname{range}\left(\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ\left(B_{2} B_{2}^{*}\right)^{\left(d_{2}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}\right)
\end{aligned}
$$

where the final step is by [15, Theorem 4].

Two sets of vectors $\alpha_{1}, \ldots, \alpha_{s}$ and $\beta_{1}, \ldots, \beta_{s}$ are said to have the same linear dependency over \mathbb{C}, if for any $c_{1}, \ldots, c_{s} \in \mathbb{C}, c_{1} \alpha_{1}+\cdots+c_{s} \alpha_{s}=0$ if and only if $c_{1} \beta_{1}+\cdots+c_{s} \beta_{s}=0$.

Theorem 4. Let $B_{l}, l=1, \ldots, k$, be $m \times n_{l}$ complex matrices. Let $x^{[l]} \in \mathbb{C}^{n_{l}}, l=1, \ldots, k$, be complex vector variables and let $H=\left(B_{1} x^{[1]}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} x^{[k]}\right)^{\left(d_{k}\right)}$. Then the components of H have the same linear dependency as the rows of matrix $\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}$. In particular, the components of H are linearly dependent over \mathbb{C} if and only if $\operatorname{det}\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)}$ 。 $\cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}=0$.

Proof. We can assume that $n_{1}=\max \left\{n_{1}, \ldots, n_{k}\right\}$. Let $H=\left(H_{1}, \ldots, H_{m}\right)^{\mathrm{T}}$. For any c_{1}, \ldots, $c_{m} \in \mathbb{C}$,

$$
\begin{aligned}
& c_{1} H_{1}+\cdots+c_{m} H_{m}=0 \Longleftrightarrow\left(c_{1}, \ldots, c_{m}\right) H=0 \\
& \quad \Longleftrightarrow\left(c_{1}, \ldots, c_{m}\right)\left(\left(B_{1} x^{[1]}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} x^{[k]}\right)^{\left(d_{k}\right)}\right)=0 \quad \forall x^{[l]} \in \mathbb{C}^{n_{l}} .
\end{aligned}
$$

First we suppose that $m=n_{1}=\cdots=n_{k}$. By Theorem 3,

$$
\begin{aligned}
& \left(c_{1}, \ldots, c_{m}\right)\left(\left(B_{1} x^{[1]}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} x^{[k]}\right)^{\left(d_{k}\right)}\right)=0 \quad \forall x^{[l]} \in \mathbb{C}^{n_{l}} \\
& \quad \Longleftrightarrow\left(c_{1}, \ldots, c_{m}\right)\left(\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}\right)=0,
\end{aligned}
$$

and so,

$$
c_{1} H_{1}+\cdots+c_{m} H_{m}=0 \Longleftrightarrow\left(c_{1}, \ldots, c_{m}\right)\left(\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}\right)=0 .
$$

If $m \geqslant n_{1}$, let $B_{l}^{\prime}=\left(B_{l}, 0_{m \times\left(m-n_{l}\right)}\right)_{m \times m}, l=1, \ldots, k$, and add new variables such that each $x^{[l]} \in \mathbb{C}^{m}$. Let $H^{\prime}=\left(B_{1}^{\prime} x^{[1]}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k}^{\prime} x^{[k]}\right)^{\left(d_{k}\right)}$. Then the components of H^{\prime} have the same linear dependency as the rows of the matrix

$$
\left(B_{1}^{\prime} B_{1}^{\prime *}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k}^{\prime} B_{k}^{\prime *}\right)^{\left(d_{k}\right)}=\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)} .
$$

Since $H=H^{\prime}$, the components of H have the same linear dependency as the rows of the matrix $\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}$.

If $m<n_{1}$, let $B_{l}^{\prime \prime}=\binom{B_{l}}{0}_{n_{1} \times n_{l}}, l=1, \ldots, k$, and let $H^{\prime \prime}=\left(B_{1}^{\prime \prime} x^{[1]}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k}^{\prime \prime} x^{[k]}\right)^{\left(d_{k}\right)}$. By the proof of the case $m \geqslant n_{1}$, we know that the components of $H^{\prime \prime}$ have the same linear dependency as the rows of the matrix

$$
\left(B_{1}^{\prime \prime}\left(B_{1}^{\prime \prime}\right)^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k}^{\prime \prime}\left(B_{k}^{\prime \prime}\right)^{*}\right)^{\left(d_{k}\right)}=\left(\begin{array}{cc}
\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)} & 0 \\
0 & 0
\end{array}\right)
$$

Since the components of H are just the first m components of $H^{\prime \prime}$, the components of H have the same dependency as the rows of the matrix $\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}$.

Corollary 5. Let $H=(A x)^{(d)}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a power linear map. Then the components of H have the same linear dependency as the rows of the matrix $\left(A A^{*}\right)^{(d)}$. In particular, the components of H are linearly dependent if and only if $\operatorname{det}\left(A A^{*}\right)^{(d)}=0$.

Proposition 6. Let $H=\left(B_{1} x^{[1]}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} x^{[k]}\right)^{\left(d_{k}\right)}$ and let $H^{\prime}=\left(B_{1} x^{[1]}\right)^{\left(d_{1}^{\prime}\right)} \circ \cdots \circ$ $\left(B_{k} x^{[k]}\right)^{\left(d_{k}^{\prime}\right)}$, where $1 \leqslant d_{l}^{\prime} \leqslant d_{l}, l=1, \ldots, k$. If the components of H are linearly dependent, then the components of H^{\prime} are linearly dependent.

Proof. If B_{l} has a zero row for some l, the proposition is true. Now assume that each B_{l} has no zero row. Since the components of H are linearly dependent, by Theorem $4, \operatorname{det}\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ$ $\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}=0$. Suppose that the components of H^{\prime} are linearly independent. Then $\operatorname{det}\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}^{\prime}\right)} \circ$ $\cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}^{\prime}\right)} \neq 0$. Since each $B_{l} B_{l}^{*}$ is positive semidefinite so is $P=\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}^{\prime}\right)} \circ \cdots \circ$ $\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}^{\prime}\right)}$, and so P is positive definite. Since each B_{l} has no zero row, each $B_{l} B_{l}^{*}$ has no diagonal entry equal to 0 , and so $Q=\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}-d_{1}^{\prime}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}-d_{k}^{\prime}\right)}$ has no zero row. By [10, Theorem 5.2.1], $P \circ Q=\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}$ is also positive definite, which contradicts $\operatorname{det}\left(B_{1} B_{1}^{*}\right)^{\left(d_{1}\right)} \circ \cdots \circ\left(B_{k} B_{k}^{*}\right)^{\left(d_{k}\right)}=0$. Thus, the components of H^{\prime} are linearly dependent.
Corollary 7. If the components of $(A x)^{(d)}$ are linearly independent, then the components of $(A x)^{(k)}$ are linearly independent for every integer $k \geqslant d$. In particular, if the rows of A are linearly independent, then so are the components of $(A x)^{(k)}$ for every integer $k \geqslant 1$.

3. Connections between $\operatorname{HDP}(n, d)$ and $\operatorname{PLDP}(n, d)$

To describe the connections between $\operatorname{HDP}(n, d)$ and $\operatorname{PLDP}(n, d)$, we need the following definition; see [18, Section 6.4] or [8].

Definition 8. Let $f=x+H: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, where H is homogeneous of degree $d \geqslant 2$ and $F_{A}=$ $y+(A y)^{(d)}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ with $N>n$. We say that f and F_{A} are a Gorni-Zampieri pair through the matrices $B \in M_{n, N}(\mathbb{C})$ and $C \in M_{N, n}(\mathbb{C})$ if

1. $f(x)=B F_{A}(C x), \forall x \in \mathbb{C}^{n}$;
2. $B C=I_{n}$;
3. $\operatorname{ker} B=\operatorname{ker} A$.

Remark 9. Gorni and Zampieri [8] introduced the Gorni-Zampieri pair for $d=3$, but it can be easily generalized to every integer $d \geqslant 2$. The crucial point is that any monomial of degree $d(\geqslant 2)$ can be written as a finite sum of polynomials $\left(q_{1} x_{1}+\cdots+q_{n} x_{n}\right)^{d}$, where $q_{i} \in \mathbb{Q}, i=1, \ldots, n$; see [18, Exercise 5.2.7].

We can verify that $f(x)=B F_{A}(C x), \forall x \in \mathbb{C}^{n}$, if and only if $H=B(A C x)^{(d)}$. Observe that $B C=I_{n}$ and $\operatorname{ker} B=\operatorname{ker} A$ implies that $\operatorname{rk} B=\operatorname{rk} C=\operatorname{rk} A=n$, where $\mathrm{rk} X$ denotes the rank of a matrix X.

For any $f=x+H: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, where H is homogeneous of degree $d \geqslant 2$, there exists some $N>n$ and a special power linear map $F_{A}=x+(A y)^{(d)}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$, such that f and F_{A} are a Gorni-Zampieri pair. Conversely, for any $F_{A}=y+(A y)^{(d)}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ with $n:=$ rk $A<N$, there exists $f=x+H: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, where H is homogeneous of degree $d \geqslant 2$, such that f and F_{A} are a Gorni-Zampieri pair.

If f and F_{A} are a Gorni-Zampieri pair, then $\operatorname{det} J f$ is a nonzero constant if and only if det $J F_{A}$ is a nonzero constant; equivalently, $J H$ is nilpotent if and only if $J(A y)^{(d)}$ is nilpotent, and f is a polynomial automorphism if and only if F_{A} is a polynomial automorphism. For the details, see [18, Section 6.4].

Lemma 10 [18, Lemma 6.4.4]. Let $f=x+H: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ and $F_{A}=y+(A y)^{(d)}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ with $N>n$ be a Gorni-Zampieri pair through the matrices $B \in M_{n, N}(\mathbb{C})$ and $C \in M_{N, n}(\mathbb{C})$. Then $A C B=A$.

Lemma 11. Let A, B be $n \times n$ complex matrices such that $A \stackrel{d}{\sim} B$ and let $T \in G l_{n}(\mathbb{C})$ be such that $F_{B}=T^{-1} F_{A} T$. Then there exists some $P \in G l_{n}(\mathbb{C})$ such that $P A T=B$.

Proof. Note that $F_{B}=T^{-1} F_{A} T$ implies that $T^{-1}(A T x)^{(d)}=(B x)^{(d)}$. The system of linear equations $A T x=0$ and $B x=0$ have the same set of solutions. Thus $A T$ and B have the same row-reduced echelon form, whence there exists $P \in G l_{n}(\mathbb{C})$ such that $P A T=B$.

Lemma 12. Let A, B be $n \times n$ complex matrices such that $A \stackrel{d}{\sim} B$. Then $\mathrm{rk} A=\operatorname{rk} B$, $\operatorname{rk}\left(B B^{*}\right)^{(d)}=\operatorname{rk}\left(A A^{*}\right)^{(d)}$ and $\operatorname{rk} B\left(B B^{*}\right)^{(d)}=\operatorname{rk} A\left(A A^{*}\right)^{(d)}$.

Proof. By Lemma 11, there exists some $P \in G l_{n}(\mathbb{C})$ such that $P A T=B$. Thus rk $A=\operatorname{rk} B$. By Theorem 3, for any $n \times n$ complex matrix C, range $\left(C C^{*}\right)^{(d)}=\operatorname{span}\left(x \mapsto(C x)^{(d)}\right)$, and so range $C\left(C C^{*}\right)^{(d)}=\operatorname{span}\left(x \mapsto C(C x)^{(d)}\right)$. Then

$$
\begin{aligned}
\operatorname{rk}\left(B B^{*}\right)^{(d)} & =\operatorname{dim} \operatorname{span}\left(x \longmapsto(B x)^{(d)}\right) \\
& =\operatorname{dim} \operatorname{span}\left(x \longmapsto T^{-1}(A T x)^{(d)}\right) \\
& =\operatorname{dim} \operatorname{span}\left(x \longmapsto(A T x)^{(d)}\right) \\
& =\operatorname{dim} \operatorname{span}\left(x \longmapsto(A x)^{(d)}\right) \\
& =\operatorname{rk}\left(A A^{*}\right)^{(d)}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{rk} B\left(B B^{*}\right)^{(d)} & =\operatorname{dim} \operatorname{span}\left(x \longmapsto B(B x)^{(d)}\right) \\
& =\operatorname{dim} \operatorname{span}\left(x \longmapsto P A T T^{-1}(A T x)^{(d)}\right) \\
& =\operatorname{dim} \operatorname{span}\left(x \longmapsto P A(A T x)^{(d)}\right) \\
& =\operatorname{dim} \operatorname{span}\left(x \longmapsto A(A x)^{(d)}\right) \\
& =\operatorname{rk} A\left(A A^{*}\right)^{(d)} . \quad \square
\end{aligned}
$$

Proposition 13. Let $f=x+H: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ and $F_{A}=y+(A y)^{(d)}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ with $N>n$ be a Gorni-Zampieri pair. Then the components of H are linearly dependent if and only if $\operatorname{rk} A\left(A A^{*}\right)^{(d)}<\mathrm{rk} A$.

Proof. There exist matrices $B \in M_{n, N}(\mathbb{C})$ and $C \in M_{N, n}(\mathbb{C})$ such that $f(x)=B F_{A}(C x), \forall x \in$ $\mathbb{C}^{n}, B C=I_{n}$, and $\operatorname{ker} B=\operatorname{ker} A$. Then $H=B(A C x)^{(d)}$. By Lemma $10, A C B=A$, so that $A^{\mathrm{T}}=B^{\mathrm{T}} C^{\mathrm{T}} A^{\mathrm{T}}$, which implies that range $A^{\mathrm{T}} \subseteq$ range B^{T}. Since rk $A=\operatorname{rk} B=n$, range $A^{\mathrm{T}}=$ range B^{T}. Suppose that the components of H are linearly dependent. Then there exists a nonzero vector $\alpha=\left(a_{1}, \ldots, a_{n}\right)^{\mathrm{T}} \in \mathbb{C}^{n}$ such that $\alpha^{\mathrm{T}} H=0$, i.e., $\alpha^{\mathrm{T}} B(A C x)^{(d)}=0$. We have $\alpha^{\mathrm{T}} B \neq 0$, since rk $B=n$. Because range $A^{\mathrm{T}}=$ range B^{T}, there exists a nonzero vector $\beta=\left(b_{1}, \ldots, b_{N}\right)^{\mathrm{T}} \in$ \mathbb{C}^{N} such that $\beta^{\mathrm{T}} A=\alpha^{\mathrm{T}} B$. Consequently $\beta^{\mathrm{T}} A(A C x)^{(d)}=0$, whence $\beta^{\mathrm{T}} A(A C B y)^{(d)}=0, \forall y \in$ \mathbb{C}^{N}, and so $\beta^{\mathrm{T}} A(A y)^{(d)}=0$. By Corollary 5, $\beta^{\mathrm{T}} A\left(A A^{*}\right)^{(d)}=0$. Thus rk $A\left(A A^{*}\right)^{(d)}<\operatorname{rk} A$. Conversely, suppose that $\operatorname{rk} A\left(A A^{*}\right)^{(d)}<\mathrm{rk} A$. Then there exists a nonzero vector $\beta=$ $\left(b_{1}, \ldots, b_{N}\right) \in \mathbb{C}^{N}$ such that $\beta^{\mathrm{T}} A\left(A A^{*}\right)^{(d)}=0$ and $\beta^{\mathrm{T}} A \neq 0$. Since range $A^{\mathrm{T}}=$ range B^{T}, there exists a nonzero vector $\alpha=\left(a_{1}, \ldots, a_{n}\right)^{\mathrm{T}} \in \mathbb{C}^{n}$ such that $\beta^{\mathrm{T}} A=\alpha^{\mathrm{T}} B$. Thus $\alpha^{\mathrm{T}} B\left(A A^{*}\right)^{(d)}=0$. By Corollary $5, \alpha^{\mathrm{T}} B(A y)^{(d)}=0$, and so $\alpha^{\mathrm{T}} B(A C x)^{(d)}=0$, i.e., $\alpha^{\mathrm{T}} H=0$.

Theorem 14. Let $f=x+H: \mathbb{C}^{n_{0}} \rightarrow \mathbb{C}^{n_{0}}$ and $F_{A}=y+(A y)^{(d)}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ be a GorniZampieri pair. If H is a counterexample to $\operatorname{HDP}\left(n_{0}, d\right)$ with $\mathrm{rk}\left(A A^{*}\right)^{(d)}=n_{1}$, then there exists a counterexample to $\operatorname{PLDP}\left(n_{1}, d\right)$. Furthermore, if $2 n_{0} \leqslant n_{1}$, then there exist counterexamples to $\operatorname{PLDP}(k, d)$ for all $k \geqslant n_{1}$.

Proof. Suppose $f=x+H: \mathbb{C}^{n_{0}} \rightarrow \mathbb{C}^{n_{0}}$, where H is homogeneous of degree d, such that $J H$ is nilpotent and the components of H are linearly independent. By Proposition 13, rk $A\left(A A^{*}\right)^{(d)}=$ $\operatorname{rk} A=n_{0}$. Let $\operatorname{rk}\left(A A^{*}\right)^{(d)}=n_{1}$. Then $n_{0} \leqslant n_{1} \leqslant N$. Let A_{i} be the i th row of A. Then $(A y)^{(d)}=$ $\left(\left(A_{1} y\right)^{d}, \ldots,\left(A_{N} y\right)^{d}\right)^{\mathrm{T}}$.

If $n_{1}=N$, then by Corollary 5 the components of $(A y)^{(d)}$ are linearly independent, which implies that $\operatorname{PLDP}\left(n_{1}, d\right)$ has a negative answer.

If $n_{1}<N$, after a suitable permutation we may assume that $\left(A_{1} y\right)^{d}, \ldots,\left(A_{n_{1}} y\right)^{d}$ are linearly independent, and there exists some $P \in G l_{N}(\mathbb{C})$ such that

$$
P^{-1}(A y)^{(d)}=\left(\left(A_{1} y\right)^{d}, \ldots,\left(A_{n_{1}} y\right)^{d}, 0, \ldots, 0\right)^{\mathrm{T}}=\left(\left(A_{1}^{\mathrm{T}}, \ldots, A_{n_{1}}^{\mathrm{T}}, 0\right)^{\mathrm{T}} y\right)^{(d)}
$$

Let $U=\left(A_{1}^{\mathrm{T}}, \ldots, A_{n_{1}}^{\mathrm{T}}, 0\right)^{\mathrm{T}} P$. It can be written as $U=\left(\begin{array}{cc}W & V \\ 0 & 0\end{array}\right)$, where $W \in M_{n_{1}}(\mathbb{C})$. Since $P^{-1}(A P y)^{(d)}=(U y)^{(d)}, A \stackrel{d}{\sim} U$. Thus

$$
\operatorname{rk} U=\operatorname{rk} A=\operatorname{rk} A\left(A A^{*}\right)^{(d)}=\operatorname{rk} U\left(U U^{*}\right)^{(d)}=\operatorname{rk} W\left(W W^{*}+V V^{*}\right)^{(d)} \leqslant \operatorname{rk} W,
$$

whence $\mathrm{rk} U=\mathrm{rk} W$. It follows that each column of V is a linear combination of the columns of W. Therefore, there exists a matrix R such that $V=W R$. Let $S=\left(\begin{array}{cc}I_{n_{1}} & -R \\ 0 & I_{N-n_{1}}\end{array}\right)$. Then

$$
S^{-1}(U S y)^{(d)}=S^{-1}\left(\left(\begin{array}{cc}
W & 0 \\
0 & 0
\end{array}\right) y\right)^{(d)}=\left(\left(\begin{array}{cc}
W & 0 \\
0 & 0
\end{array}\right) y\right)^{(d)}
$$

which implies that $U \stackrel{d}{\sim}\left(\begin{array}{ll}W & 0 \\ 0 & 0\end{array}\right)$. Consequently, $A \stackrel{d}{\sim}\left(\begin{array}{cc}W & 0 \\ 0 & 0\end{array}\right)$. It follows from Lemma 12 that

$$
\operatorname{rk}\left(\left(\begin{array}{cc}
W & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
W & 0 \\
0 & 0
\end{array}\right)^{*}\right)^{(d)}=\operatorname{rk}\left(A A^{*}\right)^{(d)}=n_{1}
$$

Thus $\operatorname{rk}\left(W W^{*}\right)^{(d)}=n_{1}$. By Corollary 5, the components of $(W x)^{(d)}: \mathbb{C}^{n_{1}} \rightarrow \mathbb{C}^{n_{1}}$ are linearly independent. Since $J(A y)^{(d)}$ is nilpotent and $A \stackrel{d}{\sim}\left(\begin{array}{cc}W & 0 \\ 0 & 0\end{array}\right)$, we have $J(W x)^{(d)}$ is nilpotent. Consequently, there exists a counterexample to $\operatorname{PLDP}\left(n_{1}, d\right)$.

Now suppose $2 n_{0} \leqslant n_{1}$. Since rk $W=$ rk $A=n_{0}$, there exists some $T \in G l\left(n_{1}\right)$ such that $W=$ $\left(W^{\prime}, 0\right) T$, where W^{\prime} is an $n_{1} \times n_{0}$ matrix. For any integer $n_{1}<m \leqslant 2 n_{1}$, let $W^{\prime \prime}$ be the matrix consisting of the first $m-n_{1}$ rows of W^{\prime}. Let $V^{\prime}=\left(\begin{array}{ccc}W_{n_{1} \times n_{0}}^{\prime} & 0_{n_{1} \times\left(n_{1}-n_{0}\right)} & 0 \\ 0_{\left(m-n_{1}\right) \times\left(n_{1}-n_{0}\right)} & W_{\left(m-n_{1}\right) \times n_{0}}^{\prime \prime} & 0\end{array}\right)_{m \times m}$, and let $V=V^{\prime}\left(\begin{array}{cc}T & 0 \\ 0 & I_{m-n_{1}}\end{array}\right)$. Then $V=\left(\begin{array}{cc}W & 0 \\ \left(0, W^{\prime \prime}\right) T & 0\end{array}\right)$. Since $J(W x)^{(d)}$ is nilpotent, $J(V x)^{(d)}$ is nilpotent. Because the components of $(W x)^{(d)}$ are linearly independent, so are the components of $\left(W^{\prime} x\right)^{(d)}$ and $\left(W^{\prime \prime} x\right)^{(d)}$. Since $2 n_{0} \leqslant n_{1}, n_{1}-n_{0} \geqslant n_{0}$, whence the components of $\left(\left(\begin{array}{cc}W^{\prime} & 0 \\ 0 & W^{\prime \prime}\end{array}\right)^{x}\right)^{(d)}$ are linearly independent, and so are the components of $\left(V^{\prime} x\right)^{(d)}$. Since $\left(\begin{array}{ll}T & 0 \\ 0 & I\end{array}\right) \in G l(m)$, we see that the components of $(V x)^{(d)}$ and $\left(V^{\prime} x\right)^{(d)}$ have the same linearly dependency. Hence the components of $(V x)^{(d)}$ are linearly independent. Thus there exist counterexamples to $\operatorname{PLDP}(m, d)$ for all $n_{1}<m \leqslant 2 n_{1}$. Let $V_{i}=\left(\begin{array}{ccc}W & & \\ & \ddots & \\ & & \\ & & \\ & & \}^{i}\end{array}\right), i \geqslant 1 . J\left(V_{i} x\right)^{(d)}$ is nilpotent, but the components of $\left(V_{i} x\right)^{(d)}$ are linearly independent. Thus there exist counterexamples to $\operatorname{PLDP}(m, d)$ for all $(i+1) n_{1}<m \leqslant(i+2) n_{1}$, and so there exist counterexamples to $\operatorname{PLDP}(k, d)$ for all $k \geqslant n_{1}$.

Corollary 15. For a fixed integer $d \geqslant 2, \operatorname{PLDP}(n, d)$ has an affirmative answer for all integers $n \geqslant 1$ if and only if $\operatorname{HDP}(n, d)$ has an affirmative answer for all integers $n \geqslant 1$.

Remark 16. For Problem 1, it is sufficient to investigate all the quadratic linear maps, i.e., power linear maps of degree 2.

4. Counterexamples to $\operatorname{PLDP}(n, d)$

By Theorem 14, counterexamples to $\operatorname{PLDP}\left(n_{1}, d\right)$ can be obtained using counterexamples to $\operatorname{HDP}\left(n_{0}, d\right)$. Here is an algorithm to do so.

Step 1: Let $f=x+H$ be such that H is a counterexample to $\operatorname{HDP}\left(n_{0}, d\right)$. Calculate F_{A} from f.
Step 2: $X:=$ the transpose of $\left(A A^{*}\right)^{(d)}, n_{1}:=\operatorname{rk} X$. Compute the row-reduced echelon form of X and denote it by Q_{0}. Let $\left(i_{1}, \ldots, i_{n_{1}}\right)$ be the indices of the columns of Q_{0} in which the leading 1's lie.
$Q_{1}:=$ the transpose of Q_{0}. Then the rows of Q_{1} have the same linear dependency as the rows of $X:=\left(A A^{*}\right)^{(d)}$, and so they have the same linear dependency as the components of H.
$Q_{2}:=$ the matrix obtained by substituting zero rows for the $i_{1}, \ldots, i_{n_{1}}$ rows of $Q_{1} . P:=$ $Q_{2}+I$. Then
$\left.P^{-1}(A y)^{(d)}=\left(0, \ldots,\left(A_{i_{1}} y\right)^{(d)}, \ldots,\left(A_{i_{n 1}} y\right)^{(d)}\right), \ldots, 0\right)$.
$A_{0}:=$ the $i_{1}, \ldots, i_{n_{1}}$ rows of A.
$W:=$ the $i_{1}, \ldots, i_{n_{1}}$ columns of $A_{0} P$.
Then $J(W x)^{(d)}$ is nilpotent but the components of the power linear map $(W x)^{(d)}: \mathbb{C}^{n_{1}} \rightarrow$ $\mathbb{C}^{n_{1}}$ are linearly independent.

When $d=3$, we give a Mathematica routine (version 5.1) to compute counterexamples to $\operatorname{PLDP}\left(n_{1}, d\right)$ using counterexamples to $\operatorname{HDP}\left(n_{0}, d\right)$. It uses the function makePairing (supplied by Wolfram Research Inc.; see [7]), which takes $f=x+H$ and returns matrices A, B, and C such that f and F_{A} are a Gorni-Zampieri pair though B and C.

```
<< LinearAlgebra 'MatrixManipulation';
Remove["'*"];
a = makePairing[f][[1]];
(* makePairing[f] returns a list, the first
element of which is A *)
m}=\mathrm{ Length[a];
Print["N=", m];
Print["A=", a//MatrixForm];
x0 = a.Transpose[a];
x = Transpose[x0*x0*x0];
n1 = MatrixRank[x] ;
Print["n1=", n1];
q1 = Transpose[RowReduce[x]];
r=Table[0, {n1}];
For[i=1; j = 1, i <= m, i++,
    If[TakeRows[q1, {i, i}] == TakeRows[IdentityMatrix[m], {j, j}],
    r=ReplacePart[r, i, j]; q1 = ReplacePart[q1, 0, {i, j}]; j++;]];
p = q1 + IdentityMatrix[m];
w1 = a[[r, All]].p;
w = w1[[All, r]];
Print["W=",w // MatrixForm];
```

In the following example, a counterexample to $\operatorname{PLDP}(67,3)$ is computed explicitly from a counterexample to $\operatorname{HDP}(10,3)$ given by M. de Bondt in [4], and counterexamples to $\operatorname{PLDP}(n, 3)$ are obtained for all $n \geqslant 67$.

Example 17. Let

$$
H_{A, B}^{[n]}=\left(\begin{array}{c}
B\left(A x_{1}-B x_{2}\right) \\
A\left(A x_{1}-B x_{2}\right) \\
B\left(A x_{3}-B x_{4}\right) \\
A\left(A x_{3}-B x_{4}\right) \\
\vdots \\
B\left(A x_{n-1}-B x_{n}\right) \\
A\left(A x_{n-1}-B x_{n}\right)
\end{array}\right)(n \text { even }),
$$

where A and B are symbolic constants.

$$
a=x_{1} x_{4}-x_{2} x_{3}, \quad b=x_{3} x_{6}-x_{4} x_{5} .
$$

Let $H=\left(H_{x_{9}, x_{10}}^{(6)}, x_{9} a, x_{9} b, x_{8} a-x_{7} b, x_{9}^{3}\right): \mathbb{C}^{10} \rightarrow \mathbb{C}^{10}$. Then H is a counterexample to $\operatorname{HDP}(10,3)$; see [4, Corollary 3.4].

Now, let $f=x+H$.

$$
\begin{aligned}
f= & \text { Function }[\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, x 10\}, \\
& \left\{x 1+x 1 * x 9 * x 10-x 2 * x 10^{\wedge} 2, x 2+x 1 * x 9^{\wedge} 2-x 2 * x 9 * x 10,\right. \\
& x 3+x 3 * x 9 * x 10-x 4 * x 10^{\wedge} 2, x 4+x 3 * x 9^{\wedge} 2-x 4 * x 9 * x 10, \\
& x 5+x 5 * x 9 * x 10-x 6 * x 10^{\wedge} 2, x 6+x 5 * x 9^{\wedge} 2-x 6 * x 9 * x 10, \\
& x 7+x 1 * x 4 * x 9-x 2 * x 3 * x 9, x 8+x 3 * x 6 * x 9-x 4 * x 5 * x 9, \\
& \left.\left.x 9+x 1 * x 4 * x 8-x 2 * x 3 * x 8-x 3 * x 6 * x 7+x 4 * x 5 * x 7, x 10+x 9^{\wedge} 3\right\}\right] .
\end{aligned}
$$

Applying the previous program, we get $N=75, n 1=67$, and a 67×67 matrix W such that $(W x)^{(3)}$ is a counterexample to $\operatorname{PLDP}(67,3)$. Since $n_{0}=10,2 n_{0} \leqslant n_{1}$, by Theorem 14 , there exist counterexamples to $\operatorname{PLDP}(n, 3)$ for all $n \geqslant 67$.

References

[1] H. Bass, E. Connel, D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982) 287-330.
[2] C.C. Cheng, Quadratic linear Keller maps, Linear Algebra Appl. 348 (2002) 203-207.
[3] M. de Bondt, A. van den Essen, The Jacobian Conjecture: linear triangularization for homogeneous polynomial maps in dimension three, J. Algebra 294 (2005) 294-306.
[4] M. de Bondt, Quasi-translations and counterexamples to the Homogeneous Dependence Problem, Proc. Amer. Math. Soc. 134 (2006) 2849-2856.
[5] L.M. Drużkowski, An effective approach to the Jacobian conjecture, Math. Ann. 264 (1983) 303-313.
[6] L.M. Drużkowski, The Jacobian Conjecture in case of rank or corank less than three, J. Pure Appl. Algebra 85 (1993) 233-244.
[7] G. Gorni, A nonlinearizable cubic-linear mapping, in: E. Hubbers (Ed.), Conference on Polynomial Maps and the Jacobian Conjecture, University of Nebraska-Lincoln, May 9-10, 1997.
[8] G. Gorni, G. Zampieri, On cubic-linear polynomial mappings, Indag. Math. 8 (4) (1997) 471-492.
[9] G. Gorni, H. Tutaj-Gasińska, On the entrywise powers of matrices, Comm. Algebra 32 (2) (2004) 495-520.
[10] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
[11] E. Hubbers, Cubic similarity in dimension four, Master's thesis, University of Nijmegen, The Netherlands, 1994.
[12] E. Hubbers, Nilpotent Jacobians, Ph.D. thesis, University of Nijmegen, The Netherlands, 1998.
[13] G. Meisters, C. Olech, Strong nilpotence holds in dimension up to five only, Linear and Multilinear Algebra 30 (1991) 231-255.
[14] G. Meisters, Power-similarity: summary of first results, in: Conference on Polynomial Automorphisms, the C.I.R.M. Luminy, France, October 12-16, 1992.
[15] L. Qiu, X. Zhan, On the span of Hadamard products of vectors, Linear Algebra Appl. 422 (2007) 304-307.
[16] K. Rusek, Polynomial automorphisms, preprint 456, Institute of Mathematics, Polish Academy of Sciences, IMPAN, sniadeckich 8, P.O. Box 137, 00-950 Warsaw, Poland, May 1989.
[17] X. Sun, X. Du, D. Liu, On the range of a Hadamard power of a positive semidefinite matrix, Linear Algebra Appl. 416 (2006) 868-871.
[18] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, vol. 190, Birkhäuser, Basel, Boston, Berlin, 2000.
[19] D. Wright, The Jacobian Conjecture: linear triangularization for cubics in dimension three, Linear and Multilinear Algebra 34 (1993) 85-97.

[^0]: 4. This work is supported by the National Natural Science Foundation of China (No. 10471055) and "985 Project" of Jilin University.

 * Corresponding author.

 E-mail address: sunxs@jlu.edu.cn (X. Sun).

