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Abstract

Let Bl, l = 1, . . . , k, be m × nl complex matrices and let x[l] ∈ Cnl , l = 1, . . . , k, be complex vector

variables. We show that the components of the map H =
(
B1x[1])(d1) ◦ · · · ◦

(
Bkx

[k])(dk)
are linearly

dependent over C if and only if det
(
B1B∗

1

)(d1) ◦ · · · ◦
(
BkB

∗
k

)(dk) = 0, where ◦ means the Hadamard

product, X∗ and X(d) denote the conjugate transpose and the dth Hadamard power of a matrix X, respectively.
Connections are established between the Homogenous Dependence Problem (HDP(n, d)), which arises in
the study of the Jacobian Conjecture, and the dependence problem for power linear maps (PLDP(n, d)). An
algorithm is given to compute counterexamples to PLDP(n, d) from those to HDP(n, d), and counterexamples
to PLDP(n, 3) are obtained for all n � 67.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let F = (F1, . . . , Fn) : Cn → Cn be a polynomial map. Fi is called the ith component of
F . The Jacobian Conjecture asserts that F is invertible if the Jacobian determinant of F is a

� This work is supported by the National Natural Science Foundation of China (No. 10471055) and “985 Project” of
Jilin University.

∗ Corresponding author.
E-mail address: sunxs@jlu.edu.cn (X. Sun).

0024-3795/$ - see front matter ( 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2007.05.047

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82609224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:sundiscretionary {-}{}{}xs@jlu.edu.cn


D. Liu et al. / Linear Algebra and its Applications 426 (2007) 706–715 707

nonzero constant. Bass et al. [1] proved that it suffices to investigate the Jacobian conjecture for
polynomial maps of the form F = x + H with JH nilpotent and H homogeneous of degree 3,
i.e., each component Hi is either zero or homogeneous of degree 3. The studies of these special
polynomial maps led to the following problem; see [18, Section 7.1], [3,4,11,16].

1.1. Homogeneous Dependence Problem (HDP(n, d))

Let H = (H1, . . . , Hn) : Cn → Cn be a homogeneous polynomial map of degree d � 2 such
that JH is nilpotent. Does it follow that H1, . . . , Hn are linearly dependent over C; equivalently,
are the rows of JH linearly dependent over C?

Affirmative answers are known when n � 3, d arbitrary [3,19]; n = 4, d = 2 [13] or d = 3
[11]. Counterexamples are given by de Bondt for all dimensions n � 5, including counterexamples
for all dimensions n � 10 with d = 3 [4]. But the following problems are still open:

Problem 1. Does HDP(n, 2) have an affirmative answer for all n > 4? See [16, Conjecture 11.3],
[18, Question 7.4.16] or [4].

Problem 2. Does HDP(n, d) have an affirmative answer for all power linear maps: H =((∑n
j=1 a1j xj

)d
, . . . ,

(∑n
j=1 anjxj

)d)?
In the paper, we solve Problem 2 and reduce Problem 1 to the case in which H is a power

linear map of degree 2, which is also called a quadratic linear map. The motivation to consider the
linear dependence problem for power linear maps is that Drużkowski [5] showed that it suffices
to investigate the Jacobian Conjecture for all the maps F = (

x1 + (∑n
j=1 a1j xj

)3
, . . . , xn +(∑n

j=1 anjxj

)3). To describe the structure of these maps, it is necessary to consider the linear
dependence problem for power linear maps. For studies of power linear maps we refer the reader
to [2,6,12,14].

For m × n complex matrices A = (aij ) and B = (bij ) and a positive integer d, the matrix
(aij bij ) is called the Hadamard product of A and B, denoted by A ◦ B, and the matrix (ad

ij )

is called the dth Hadamard power of A, denoted by A(d). We view the vectors in Cn as col-
umn vectors, and let x = (x1, . . . , xn)

T, F = (F1, . . . , Fn)
T and A = (aij )n×n. Then F = (

x1 +(∑n
j=1 a1j xj

)d
, . . . , xn + (∑n

j=1 anjxj

)d)T can be written as FA(x) = x + (Ax)(d), and H =((∑n
j=1 a1j xj

)d
, . . . ,

(∑n
j=1 anjxj

)d)T can be written as H = (Ax)(d).

Definition 1. The map FA(x) = x + (Ax)(d), d � 2, is called a Drużkowski map of degree d,
or a special power linear map of degree d , and H = (Ax)(d) is called a power linear map of
degree d.

Problem 2 can be restated as follows,

1.2. Dependence Problem for Power Linear Maps (PLDP(n, d))

Let H = (Ax)(d) : Cn → Cn be a power linear map such that JH is nilpotent. Does it follow
that H1 = (∑n

j=1 a1j xj

)d
, . . . , Hn = (∑n

j=1 anjxj

)d are linearly dependent over C; equiva-
lently, are the rows of JH linearly dependent over C?
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In general, we describe the linear dependency of the following maps:

H = (
B1x

[1])(d1) ◦ · · · ◦ (Bkx
[k])(dk),

whereBl =
(
b

[l]
ij

)
m×nl

, l = 1, . . . , k, are complex matrices,x[l] = (
x

[l]
1 , . . . , x

[l]
nl

)T
, l = 1, . . . , k,

are complex vector variables, and d1, . . . , dk are positive integers. We show that the components

of H are linearly dependent over C if and only if det
(
B1B

∗
1

)(d1) ◦ · · · ◦ (BkB
∗
k

)(dk) = 0, where
X∗ denotes the conjugate transpose of a matrix X. In particular, the components of H = (Ax)(d)

are linearly dependent if and only if det(AA∗)(d) = 0.
Using this result, we establish connections between HDP(n, d) and PLDP(n, d) though Gorni–

Zampieri pairing. In fact, we prove that, for a fixed d , HDP(n, d) has an affirmative answer for
all n � 1 if and only if PLDP(n, d) has an affirmative answer for all n � 1. As a consequence,
counterexamples to PLDP(n, d) exist, too. An algorithm is given to compute counterexamples
to PLDP(n1, d) from counterexamples to HDP(n0, d), and when d = 3, a concrete program is
given and a counterexample to PLDP(67, 3) is computed explicitly, from which counterexamples
to PLDP(n, 3) are derived for all n � 67.

2. Linear dependency of H = (
B1x

[1])(d1) ◦ · · ·◦ (
Bkx

[k])(dk)

We start with some basic facts about Hadamard products of matrices; for details we refer the
reader to [10, Chapter 5].

A Hermitian matrix B is said to be positive semidefinite if x∗Bx � 0 for all x ∈ Cn. If A =
(aij )m×n and B = (bij )m×n are positive semidefinite then so is A ◦ B. If, in addition, B is positive
definite and A has no diagonal entry equal to 0, then A ◦ B is positive definite [10, Theorem 5.2.1].

Now we introduce the power similarity of power linear maps; for details see [12,14].
Let A and B be n × n complex matrices; let FA = x + (Ax)(d) and FB = x + (Bx)(d) be

special power linear maps of degree d � 2. FA is said to be power similar to FB , denoted by

FA
d∼ FB (or A

d∼ B), if there exists some T ∈ Gln(C) such that FB = T −1FAT .

We can verify that FA
d∼ FB (or A

d∼ B) if and only if there exists some T ∈ Gln(C) such that
T −1(AT x)(d) = (Bx)(d). The invariants of power similarity can be used to classify power linear
maps. The dimension of span(x �→ (Ax)(d)) is a power similarity invariant, where by the span
of a map we mean the subspace spanned by the image of the map. Gorni and Tutaj-Gasińska
[9] studied this invariant and conjectured that span(x �→ (Ax)(d)) = range(AA∗)(d). The authors
proved the conjecture in [17] and recently Qiu and Zhan [15] generalized it to the following form.

Theorem 2 [15, Theorem 6]. Let Bl, l = 1, . . . , k, be n × n complex matrices. Then

span
{(

B1x
[1]) ◦ (B2x

[2]) ◦ · · · ◦ (Bkx
[k])∣∣x[l] ∈ Cn

}
= range

((
B1B

∗
1

) ◦ (B2B
∗
2

) ◦ · · · ◦ (BkB
∗
k

))
.

Theorem 2 can be generalized to the following form.

Theorem 3. Let Bl, l = 1, . . . , k, be n × n complex matrices. Then

span
{(

B1x
[1])(d1) ◦ (B2x

[2])(d2) ◦ · · · ◦ (Bkx
[k])(dk)

∣∣x[l] ∈ Cn
}

= range
((

B1B
∗
1

)(d1) ◦ (B2B
∗
2

)(d2) ◦ · · · ◦ (BkB
∗
k

)(dk)
)
.
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Proof

span
{(

B1x
[1])(d1) ◦ (B2x

[2])(d2) ◦ · · · ◦ (Bkx
[k])(dk)

∣∣x[l] ∈ Cn
}

= span
{
(B1B

∗
1 y[1])(d1) ◦ (B2B

∗
2 y[2])(d2) ◦ · · · ◦ (BkB

∗
k y[k])(dk)

∣∣y[l] ∈ Cn
}

= range
((

B1B
∗
1

)(d1) ◦ (B2B
∗
2

)(d2) ◦ · · · ◦ (BkB
∗
k

)(dk)
)
,

where the final step is by [15, Theorem 4]. �

Two sets of vectors α1, . . . , αs and β1, . . . , βs are said to have the same linear dependency
over C, if for any c1, . . . , cs ∈ C, c1α1 + · · · + csαs = 0 if and only if c1β1 + · · · + csβs = 0.

Theorem 4. Let Bl, l = 1, . . . , k, be m × nl complex matrices. Let x[l] ∈ Cnl , l = 1, . . . , k,

be complex vector variables and let H = (
B1x

[1])(d1) ◦ · · · ◦ (Bkx
[k])(dk). Then the components

of H have the same linear dependency as the rows of matrix
(
B1B

∗
1

)(d1) ◦ · · · ◦ (BkB
∗
k

)(dk). In

particular, the components of H are linearly dependent over C if and only if det
(
B1B

∗
1

)(d1) ◦
· · · ◦ (BkB

∗
k

)(dk) = 0.

Proof. We can assume that n1 = max{n1, . . . , nk}. Let H = (H1, . . . , Hm)T. For any c1, . . . ,

cm ∈ C,

c1H1 + · · · + cmHm = 0 ⇐⇒ (c1, . . . , cm)H = 0

⇐⇒ (c1, . . . , cm)
((

B1x
[1])(d1) ◦ · · · ◦ (Bkx

[k])(dk)
) = 0 ∀x[l] ∈ Cnl .

First we suppose that m = n1 = · · · = nk . By Theorem 3,

(c1, . . . , cm)
((

B1x
[1])(d1) ◦ · · · ◦ (Bkx

[k])(dk)
) = 0 ∀x[l] ∈ Cnl

⇐⇒ (c1, . . . , cm)
((

B1B
∗
1

)(d1) ◦ · · · ◦ (BkB
∗
k

)(dk)
) = 0,

and so,

c1H1 + · · · + cmHm = 0 ⇐⇒ (c1, . . . , cm)
((

B1B
∗
1

)(d1) ◦ · · · ◦ (BkB
∗
k

)(dk)
) = 0.

If m � n1, let B ′
l = (Bl, 0m×(m−nl))m×m, l = 1, . . . , k, and add new variables such that each

x[l] ∈ Cm. Let H ′ = (
B ′

1x
[1])(d1) ◦ · · · ◦ (B ′

kx
[k])(dk). Then the components of H ′ have the same

linear dependency as the rows of the matrix(
B ′

1B
′∗
1

)(d1) ◦ · · · ◦ (B ′
kB

′∗
k

)(dk) = (
B1B

∗
1

)(d1) ◦ · · · ◦ (BkB
∗
k

)(dk).

Since H = H ′, the components of H have the same linear dependency as the rows of the matrix(
B1B

∗
1

)(d1) ◦ · · · ◦ (BkB
∗
k

)(dk).

If m < n1, let B ′′
l =

(
Bl

0

)
n1×nl

, l = 1, . . . , k, and let H ′′ = (
B ′′

1 x[1])(d1) ◦ · · · ◦ (B ′′
k x[k])(dk).

By the proof of the case m � n1, we know that the components of H ′′ have the same linear
dependency as the rows of the matrix

(
B ′′

1

(
B ′′

1

)∗)(d1) ◦ · · · ◦ (B ′′
k

(
B ′′

k

)∗)(dk) =
((

B1B
∗
1

)(d1) ◦ · · · ◦ (BkB
∗
k

)(dk) 0
0 0

)
.
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Since the components of H are just the first m components of H ′′, the components of H have the

same dependency as the rows of the matrix
(
B1B

∗
1

)(d1) ◦ · · · ◦ (BkB
∗
k

)(dk). �

Corollary 5. Let H = (Ax)(d) : Cn → Cn be a power linear map. Then the components of H

have the same linear dependency as the rows of the matrix (AA∗)(d). In particular, the components
of H are linearly dependent if and only if det(AA∗)(d) = 0.

Proposition 6. Let H = (
B1x

[1])(d1) ◦ · · · ◦ (Bkx
[k])(dk) and let H ′ = (

B1x
[1])(d ′

1) ◦ · · · ◦(
Bkx

[k])(d ′
k), where 1 � d ′

l � dl, l = 1, . . . , k. If the components of H are linearly dependent,
then the components of H ′ are linearly dependent.

Proof. If Bl has a zero row for some l, the proposition is true. Now assume that each Bl has no

zero row. Since the components of H are linearly dependent, by Theorem 4, det
(
B1B

∗
1

)(d1) ◦ · · · ◦(
BkB

∗
k

)(dk) =0. Suppose that the components ofH ′ are linearly independent. Then det
(
B1B

∗
1

)(d ′
1) ◦

· · · ◦ (BkB
∗
k

)(d ′
k) /= 0. Since each BlB

∗
l is positive semidefinite so is P = (

B1B
∗
1

)(d ′
1) ◦ · · · ◦(

BkB
∗
k

)(d ′
k), and so P is positive definite. Since each Bl has no zero row, each BlB

∗
l has no

diagonal entry equal to 0, and so Q = (
B1B

∗
1

)(d1−d ′
1) ◦ · · · ◦ (BkB

∗
k

)(dk−d ′
k) has no zero row.

By [10, Theorem 5.2.1], P ◦ Q = (
B1B

∗
1

)(d1) ◦ · · · ◦ (BkB
∗
k

)(dk) is also positive definite, which

contradicts det
(
B1B

∗
1

)(d1) ◦ · · · ◦ (BkB
∗
k

)(dk) = 0. Thus, the components of H ′ are linearly de-
pendent. �

Corollary 7. If the components of (Ax)(d) are linearly independent, then the components of
(Ax)(k) are linearly independent for every integer k � d. In particular, if the rows of A are
linearly independent, then so are the components of (Ax)(k) for every integer k � 1.

3. Connections between HDP(n, d) and PLDP(n, d)

To describe the connections between HDP(n, d) and PLDP(n, d), we need the following def-
inition; see [18, Section 6.4] or [8].

Definition 8. Let f = x + H : Cn → Cn, where H is homogeneous of degree d � 2 and FA =
y + (Ay)(d) : CN → CN with N > n. We say that f and FA are a Gorni–Zampieri pair through
the matrices B ∈ Mn,N(C) and C ∈ MN,n(C) if

1. f (x) = BFA(Cx), ∀x ∈ Cn;
2. BC = In;
3. ker B = ker A.

Remark 9. Gorni and Zampieri [8] introduced the Gorni–Zampieri pair for d = 3, but it can be
easily generalized to every integer d � 2. The crucial point is that any monomial of degree d(� 2)

can be written as a finite sum of polynomials (q1x1 + · · · + qnxn)
d , where qi ∈ Q, i = 1, . . . , n;

see [18, Exercise 5.2.7].

We can verify that f (x) = BFA(Cx), ∀x ∈ Cn, if and only if H = B(ACx)(d). Observe that
BC = In and kerB = ker A implies that rk B = rk C = rk A = n, where rk X denotes the rank
of a matrix X.
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For any f = x + H : Cn → Cn, where H is homogeneous of degree d � 2, there exists some
N > n and a special power linear map FA = x + (Ay)(d) : CN → CN , such that f and FA are a
Gorni–Zampieri pair. Conversely, for any FA = y + (Ay)(d) : CN → CN with n := rk A < N ,
there exists f = x + H : Cn → Cn, where H is homogeneous of degree d � 2, such that f and
FA are a Gorni–Zampieri pair.

If f and FA are a Gorni–Zampieri pair, then det Jf is a nonzero constant if and only if det JFA

is a nonzero constant; equivalently, JH is nilpotent if and only if J (Ay)(d) is nilpotent, and f is
a polynomial automorphism if and only if FA is a polynomial automorphism. For the details, see
[18, Section 6.4].

Lemma 10 [18, Lemma 6.4.4]. Let f = x + H : Cn → Cn and FA = y + (Ay)(d) : CN → CN

with N > n be a Gorni–Zampieri pair through the matrices B ∈ Mn,N(C) and C ∈ MN,n(C).

Then ACB = A.

Lemma 11. Let A, B be n × n complex matrices such that A
d∼ B and let T ∈ Gln(C) be such

that FB = T −1FAT . Then there exists some P ∈ Gln(C) such that PAT = B.

Proof. Note that FB = T −1FAT implies that T −1(AT x)(d) = (Bx)(d). The system of linear
equations AT x = 0 and Bx = 0 have the same set of solutions. Thus AT and B have the same
row-reduced echelon form, whence there exists P ∈ Gln(C) such that PAT = B. �

Lemma 12. Let A, B be n × n complex matrices such that A
d∼ B. Then rk A = rk B,

rk(BB∗)(d) = rk (AA∗)(d) and rk B(BB∗)(d) = rkA(AA∗)(d).

Proof. By Lemma 11, there exists some P ∈ Gln(C) such that PAT = B. Thus rk A = rk B.
By Theorem 3, for any n × n complex matrix C, range(CC∗)(d) = span(x �→ (Cx)(d)), and so
range C(CC∗)(d) = span(x �→ C(Cx)(d)). Then

rk(BB∗)(d) = dim span(x �−→ (Bx)(d))

= dim span(x �−→ T −1(AT x)(d))

= dim span(x �−→ (AT x)(d))

= dim span(x �−→ (Ax)(d))

= rk(AA∗)(d)

and

rk B(BB∗)(d) = dim span(x �−→ B(Bx)(d))

= dim span(x �−→ PAT T −1(AT x)(d))

= dim span(x �−→ PA(AT x)(d))

= dim span(x �−→ A(Ax)(d))

= rk A(AA∗)(d). �

Proposition 13. Let f = x + H : Cn → Cn and FA = y + (Ay)(d) : CN → CN with N > n

be a Gorni–Zampieri pair. Then the components of H are linearly dependent if and only if
rk A(AA∗)(d) < rk A.
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Proof. There exist matrices B ∈ Mn,N(C) and C ∈ MN,n(C) such that f (x) = BFA(Cx), ∀x ∈
Cn, BC = In, and ker B = ker A. Then H = B(ACx)(d). By Lemma 10, ACB = A, so that
AT = BTCTAT, which implies that range AT ⊆ range BT. Since rk A = rk B = n, range AT =
range BT. Suppose that the components of H are linearly dependent. Then there exists a nonzero
vector α = (a1, . . . , an)

T ∈ Cn such that αTH = 0, i.e., αTB(ACx)(d) = 0. We have αTB /= 0,
since rk B = n. Because range AT = range BT, there exists a nonzero vectorβ = (b1, . . . , bN)T ∈
CN such that βTA = αTB. Consequently βTA(ACx)(d) = 0, whence βTA(ACBy)(d) = 0, ∀y ∈
CN , and so βTA(Ay)(d) = 0. By Corollary 5, βTA(AA∗)(d) = 0. Thus rk A(AA∗)(d) < rk A.

Conversely, suppose that rk A(AA∗)(d) < rk A. Then there exists a nonzero vector β =
(b1, . . . , bN) ∈ CN such that βTA(AA∗)(d) = 0 and βTA /= 0. Since rangeAT = range BT, there
exists a nonzero vector α = (a1, . . . , an)

T ∈ Cn such that βTA = αTB. Thus αTB(AA∗)(d) = 0.
By Corollary 5, αTB(Ay)(d) = 0, and so αTB(ACx)(d) = 0, i.e., αTH = 0. �

Theorem 14. Let f = x + H : Cn0 → Cn0 and FA = y + (Ay)(d) : CN → CN be a Gorni–
Zampieri pair. If H is a counterexample to HDP(n0, d) with rk(AA∗)(d) = n1, then there exists
a counterexample to PLDP(n1, d). Furthermore, if 2n0 � n1, then there exist counterexamples
to PLDP(k, d) for all k � n1.

Proof. Suppose f = x + H : Cn0 → Cn0 , where H is homogeneous of degree d, such that JH is
nilpotent and the components of H are linearly independent. By Proposition 13, rk A(AA∗)(d) =
rk A = n0. Let rk(AA∗)(d) = n1. Then n0 � n1 � N . Let Ai be the ith row of A. Then (Ay)(d) =
((A1y)d, . . . , (ANy)d)T.

If n1 = N , then by Corollary 5 the components of (Ay)(d) are linearly independent, which
implies that PLDP(n1, d) has a negative answer.

If n1 < N , after a suitable permutation we may assume that (A1y)d, . . . , (An1y)d are linearly
independent, and there exists some P ∈ GlN(C) such that

P −1(Ay)(d) = ((A1y)d, . . . , (An1y)d, 0, . . . , 0)T = ((AT
1 , . . . , AT

n1
, 0)Ty)(d).

Let U = (AT
1 , . . . , AT

n1
, 0)TP . It can be written as U =

(
W V

0 0

)
, where W ∈ Mn1(C). Since

P −1(APy)(d) = (Uy)(d), A
d∼ U. Thus

rk U = rk A = rk A(AA∗)(d) = rk U(UU∗)(d) = rkW(WW ∗ + V V ∗)(d) � rk W,

whence rk U = rk W. It follows that each column of V is a linear combination of the columns of
W . Therefore, there exists a matrix R such that V = WR. Let S =

(
In1 −R

0 IN−n1

)
. Then

S−1(USy)(d) = S−1
((

W 0
0 0

)
y

)(d)

=
((

W 0
0 0

)
y

)(d)

,

which implies that U
d∼
(

W 0
0 0

)
. Consequently, A

d∼
(

W 0
0 0

)
. It follows from Lemma 12 that

rk

((
W 0
0 0

)(
W 0
0 0

)∗)(d)

= rk (AA∗)(d) = n1.

Thus rk(WW ∗)(d) = n1. By Corollary 5, the components of (Wx)(d) : Cn1 → Cn1 are linearly

independent. Since J (Ay)(d) is nilpotent and A
d∼
(

W 0
0 0

)
, we have J (Wx)(d) is nilpotent. Con-

sequently, there exists a counterexample to PLDP(n1, d).
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Now suppose 2n0 � n1. Since rk W = rk A = n0, there exists someT ∈ Gl(n1) such thatW =
(W ′, 0)T , where W ′ is an n1 × n0 matrix. For any integer n1 < m � 2n1, let W ′′ be the matrix

consisting of the first m − n1 rows of W ′. Let V ′ =
(

W ′
n1×n0

0n1×(n1−n0) 0
0(m−n1)×(n1−n0) W ′′

(m−n1)×n0
0

)
m×m

, and let

V = V ′
(

T 0
0 Im−n1

)
. Then V =

(
W 0

(0, W ′′)T 0

)
. Since J (Wx)(d) is nilpotent, J (V x)(d) is nilpotent.

Because the components of (Wx)(d) are linearly independent, so are the components of (W ′x)(d)

and (W ′′x)(d). Since 2n0 � n1, n1 − n0 � n0, whence the components of
((

W ′ 0
0 W ′′

)
x

)(d)

are

linearly independent, and so are the components of (V ′x)(d). Since
(

T 0
0 I

)
∈ Gl(m), we see that the

components of (V x)(d) and (V ′x)(d) have the same linearly dependency. Hence the components
of (V x)(d) are linearly independent. Thus there exist counterexamples to PLDP(m, d) for all

n1 < m � 2n1. Let Vi =
⎛
⎜⎝

W

. . .
W

⎫⎬
⎭i

V

⎞
⎟⎠, i � 1. J (Vix)(d) is nilpotent, but the components

of (Vix)(d) are linearly independent. Thus there exist counterexamples to PLDP(m, d) for all
(i + 1)n1 < m � (i + 2)n1, and so there exist counterexamples to PLDP(k, d) for all k � n1. �

Corollary 15. For a fixed integer d � 2, PLDP(n, d) has an affirmative answer for all integers
n � 1 if and only if HDP(n, d) has an affirmative answer for all integers n � 1.

Remark 16. For Problem 1, it is sufficient to investigate all the quadratic linear maps, i.e., power
linear maps of degree 2.

4. Counterexamples to PLDP(n, d)

By Theorem 14, counterexamples to PLDP(n1, d) can be obtained using counterexamples to
HDP(n0, d). Here is an algorithm to do so.

Step 1: Let f = x + H be such that H is a counterexample to HDP(n0, d). Calculate FA

from f .
Step 2: X := the transpose of (AA∗)(d), n1 := rkX. Compute the row-reduced echelon form
of X and denote it by Q0. Let (i1, . . . , in1) be the indices of the columns of Q0 in which the
leading 1’s lie.
Q1 := the transpose of Q0. Then the rows of Q1 have the same linear dependency as the
rows of X := (AA∗)(d), and so they have the same linear dependency as the components of
H .
Q2 := the matrix obtained by substituting zero rows for the i1, . . . , in1 rows of Q1. P :=
Q2 + I . Then

P −1(Ay)(d) = (0, . . . , (Ai1y)(d), . . . , (Ain1y)(d)), . . . , 0).

A0 := the i1, . . . , in1 rows of A.
W := the i1, . . . , in1 columns of A0P .
Then J (Wx)(d) is nilpotent but the components of the power linear map (Wx)(d) : Cn1 →
Cn1 are linearly independent.
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When d = 3, we give a Mathematica routine (version 5.1) to compute counterexamples to
PLDP(n1, d) using counterexamples to HDP(n0, d). It uses the function makePairing (supplied
by Wolfram Research Inc.; see [7]), which takes f = x + H and returns matrices A, B, and C

such that f and FA are a Gorni–Zampieri pair though B and C.

<< LinearAlgebra ‘MatrixManipulation’;
Remove["‘*"];
a = makePairing[f][[1]];
(* makePairing[f] returns a list, the first
element of which is A *)
m = Length[a];
Print["N=", m];
Print["A=",a//MatrixForm];
x0 = a.Transpose[a];
x = Transpose[x0*x0*x0];
n1 = MatrixRank[x];
Print["n1=", n1];
q1 = Transpose[RowReduce[x]];
r = Table[0, {n1}];
For[i = 1; j = 1, i <= m, i++,

If[TakeRows[q1, {i, i}] == TakeRows[IdentityMatrix[m], {j, j}],

r = ReplacePart[r, i, j]; q1 = ReplacePart[q1, 0, {i, j}]; j++;]];

p = q1 + IdentityMatrix[m];
w1 = a[[r, All]].p;
w = w1[[All, r]];
Print["W=",w // MatrixForm];

In the following example, a counterexample to PLDP(67, 3) is computed explicitly from a
counterexample to HDP(10, 3) given by M. de Bondt in [4], and counterexamples to PLDP(n, 3)
are obtained for all n � 67.

Example 17. Let

H
[n]
A,B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B(Ax1 − Bx2)

A(Ax1 − Bx2)

B(Ax3 − Bx4)

A(Ax3 − Bx4)
...

B(Axn−1 − Bxn)

A(Axn−1 − Bxn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(n even),

where A and B are symbolic constants.

a = x1x4 − x2x3, b = x3x6 − x4x5.

Let H =(H(6)
x9,x10 , x9a, x9b, x8a − x7b, x3

9

) : C10 →C10. Then H is a counterexample to
HDP(10, 3); see [4, Corollary 3.4].
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Now, let f = x + H .

f = Function[{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},
{x1 + x1 ∗ x9 ∗ x10 − x2 ∗ x10∧2, x2 + x1 ∗ x9∧2 − x2 ∗ x9 ∗ x10,

x3 + x3 ∗ x9 ∗ x10 − x4 ∗ x10∧2, x4 + x3 ∗ x9∧2 − x4 ∗ x9 ∗ x10,

x5 + x5 ∗ x9 ∗ x10 − x6 ∗ x10∧2, x6 + x5 ∗ x9∧2 − x6 ∗ x9 ∗ x10,

x7 + x1 ∗ x4 ∗ x9 − x2 ∗ x3 ∗ x9, x8 + x3 ∗ x6 ∗ x9 − x4 ∗ x5 ∗ x9,

x9 + x1 ∗ x4 ∗ x8 − x2 ∗ x3 ∗ x8 − x3 ∗ x6 ∗ x7 + x4 ∗ x5 ∗ x7, x10 + x9∧3}].
Applying the previous program, we get N = 75, n1 = 67, and a 67 × 67 matrix W such that

(Wx)(3) is a counterexample to PLDP(67, 3). Since n0 = 10, 2n0 � n1, by Theorem 14, there
exist counterexamples to PLDP(n, 3) for all n � 67.
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[9] G. Gorni, H. Tutaj-Gasińska, On the entrywise powers of matrices, Comm. Algebra 32 (2) (2004) 495–520.

[10] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
[11] E. Hubbers, Cubic similarity in dimension four, Master’s thesis, University of Nijmegen, The Netherlands, 1994.
[12] E. Hubbers, Nilpotent Jacobians, Ph.D. thesis, University of Nijmegen, The Netherlands, 1998.
[13] G. Meisters, C. Olech, Strong nilpotence holds in dimension up to five only, Linear and Multilinear Algebra 30

(1991) 231–255.
[14] G. Meisters, Power-similarity: summary of first results, in: Conference on Polynomial Automorphisms, the C.I.R.M.

Luminy, France, October 12–16, 1992.
[15] L. Qiu, X. Zhan, On the span of Hadamard products of vectors, Linear Algebra Appl. 422 (2007) 304–307.
[16] K. Rusek, Polynomial automorphisms, preprint 456, Institute of Mathematics, Polish Academy of Sciences, IMPAN,

sniadeckich 8, P.O. Box 137, 00-950 Warsaw, Poland, May 1989.
[17] X. Sun, X. Du, D. Liu, On the range of a Hadamard power of a positive semidefinite matrix, Linear Algebra Appl.

416 (2006) 868–871.
[18] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, vol. 190,

Birkhäuser, Basel, Boston, Berlin, 2000.
[19] D. Wright, The Jacobian Conjecture: linear triangularization for cubics in dimension three, Linear and Multilinear

Algebra 34 (1993) 85–97.


	Introduction
	Homogeneous Dependence Problem (HDP(n, d))
	Dependence Problem for Power Linear Maps (PLDP(n, d))

	Linear dependency of H=(to8.5.B1x[1])to8.5.(d1)(to8.5.Bkx[k] )to8.5.(dk)
	Connections between HDP(n, d) and PLDP(n, d)
	Counterexamples to PLDP(n, d)
	References

