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Evidence for surprise minimization 
over value maximization in choice 
behavior
Philipp Schwartenbeck1,2,3,4, Thomas H B FitzGerald1,4, Christoph Mathys1,4, Ray Dolan1,4, 
Martin Kronbichler2,3 & Karl Friston1

Classical economic models are predicated on the idea that the ultimate aim of choice is to maximize 
utility or reward. In contrast, an alternative perspective highlights the fact that adaptive behavior 
requires agents’ to model their environment and minimize surprise about the states they frequent. 
We propose that choice behavior can be more accurately accounted for by surprise minimization 
compared to reward or utility maximization alone. Minimizing surprise makes a prediction at variance 
with expected utility models; namely, that in addition to attaining valuable states, agents attempt 
to maximize the entropy over outcomes and thus ‘keep their options open’. We tested this prediction 
using a simple binary choice paradigm and show that human decision-making is better explained by 
surprise minimization compared to utility maximization. Furthermore, we replicated this entropy-
seeking behavior in a control task with no explicit utilities. These findings highlight a limitation of 
purely economic motivations in explaining choice behavior and instead emphasize the importance of 
belief-based motivations.

Modern economic models of choice, dating to the 1950s, suggest that the aim of human decision-making 
is to maximize ‘utility’, a quantity tied to notions of pleasure and reward1–3. More recently a different line 
of reasoning has stressed the notion of homeostasis (or allostasis), recognizing that agents maintain their 
states within certain bounds to persist in the face of a changing world4–6. From an information-theoretic 
perspective7 this implies that agents have to optimize a model of their environment and, given that 
model, minimize surprise about the states they find themselves in. This is equivalent to maximizing the 
evidence for their model of the world (because, negative surprise is Bayesian model evidence). Based on 
this view, belief- as opposed to reward-based formulations of choice behavior are attracting interest8–11.

For a purely passive agent, surprise can be minimized through learning and inference (changing 
an internal model to make better predictions). However, embodied agents are capable of acting on the 
world, enabling them to minimize surprise through (epistemic or pragmatic) actions and select the out-
comes they expect (i.e., are the least surprising). This notion is at the heart of active inference, which 
provides an increasingly influential account of action and choice behavior8,12–15. Active inference rests 
on the assumption that the brain is a Bayesian inference machine that encodes beliefs about the world, 
rendering cognition probabilistic. Here the concept of reward is replaced by prior expectations about 
occupying different states, where ‘desired’ or preferred outcomes are more likely, given an agents’ beliefs. 
An active inference agent is compelled to minimize surprise by realizing preferred outcomes, where 
surprise can be quantified by the Kullback-Leibler divergence (relative entropy) between the agent’s prior 
preferences and posterior beliefs about likely outcomes given current observations11,16,17.

1The Wellcome Trust Centre for Neuroimaging, UCL, 12 Queen Square, London, WC1N 3BG, UK. 2Centre for 
Cognitive Neuroscience, University of Salzburg, Salzburg, Austria. 3Neuroscience Institute, Christian-Doppler-
Klinik, Paracelsus Medical University Salzburg, Salzburg, Austria. 4Max Planck University College London Centre 
for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK. Correspondence and requests for 
materials should be addressed to P.S. (email: philipp.schwartenbeck.@sbg.ac.at)

Received: 12 February 2015

Accepted: 19 October 2015

Published: 13 November 2015

OPEN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/41993756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:philipp.schwartenbeck.@sbg.ac.at


www.nature.com/scientificreports/

2Scientific RepoRts | 5:16575 | DOI: 10.1038/srep16575

A key difference between belief-based and economic models of choice is the former predicts behav-
ior should be sensitive to both reward and information or entropy gain, whereas the latter predict that 
humans are exclusively sensitive to the rewarding value of outcomes:
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Where σ denotes a softmax choice-rule, sT  refers to final outcomes, st to a current state, π to a policy 
(i.e., a sequence of control states ut, which determine the likelihood over final outcome states 

π( , ) = ( , ) ( , )…+ + + +P s s P s s u P s s uT t t t t t t t1 2 1 1 ). Here, m denotes an agent’s model—that includes prior 
preferences or utilities (i.e., a probability distribution over final states that is determined by the agent’s 
expectations or beliefs about the states it aspires to; see methods for details).

Each policy prescribes a unique sequence of probability transitions given the control states chosen 
by the agent, and the agent has to choose among (allowable) policies. Note that these sequential pol-
icies are more general than classical state-action policies. Thus, classical utility-based models predict 
that agents maximize expected utility based on their preferences, whereas active inference predicts that 
agents will maximize both utility and entropy, which can be understood intuitively as ‘keeping ones 
options open’ or ‘planning to be surprised’18 (see Fig. 1 for an illustration). It is important to appreciate 
that entropy is not equivalent to classical notions of exploration or novelty seeking, since its aim is not 
to decrease uncertainty over outcomes but rather to keep options open19,20. In short, active inference 
predicts that purposeful behavior will be governed by both entropy and utility maximization, where the 

Figure 1. Difference between classical economic models of choice and active inference. On the left, an 
example of two offers is illustrated, where offer 1 (left, blue bars—middle panel) contains two possible 
outcomes and offer 2 (right, yellow bars—middle panel) contains four different outcomes with equal 
probability. Based on a given set of preferences (grey bars—top panel), the expected utilities of offer 1 and 2 
are almost identical, whereas the entropy over outcomes is higher in offer 2. On the right, choice tendencies 
under classical economic models and under surprise minimization are illustrated, where σ denotes a 
(softmax-) choice rule. While classical economic models predict that behaviour will be governed by 
maximising expected utility alone (top right), active inference predicts that agents are additionally compelled 
to maximize entropy over outcomes (bottom right).
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relative contribution of the two depends on the relative value of outcomes21. Our experimental paradigm 
was designed to test this prediction.

Results
We created a novel paradigm to test for entropy-seeking in a group of healthy subjects (n =  20). 
Participants had to decide between two options, each containing a lottery varying in the type and num-
ber of snacks (Fig. 2). Subjects were told that, at the end of the experiment, they would receive one of 
their choices (selected at random). The number of snacks comprising a lottery determined the entropy 
over snacks a subject could win. If subjects selected a lottery with only one snack (e.g., a chocolate bar), 
then there is full certainty about the outcome (i.e., no information gain). If there were several snacks in 
the selection, then any of the snacks could be chosen with equal probability ( = / )p N1 Snacks . We ensured 
that subjects cared about which snack they could win by asking them to refrain from eating for at least 
3.5 hours before testing. Furthermore, we did not use snacks that subjects either strongly liked or dis-
liked, to ensure a meaningful decision, and to ensure that the sequence of trials produced roughly 
orthogonal variations in entropy and utility.

Crucially, in this task entropy over outcomes can be understood as the potential to secure different 
snacks. Given that, in our design, all outcomes were equally probable; this is equivalent to the number of 
snacks in an option (i.e., the cardinality of the outcome space). Importantly, minimizing the (KL) diver-
gence between predicted and preferred states rests on choices with high entropy over outcome states, 
thus ‘keeping options open’, even if the expected utility is exactly the same.

This task was ideally suited to compare a belief-based and a purely economic formulation of choice. 
If subjects solely maximized reward or utility, then their choices would be determined exclusively by 
trying to secure preferred snacks. Thus, subjects would always choose the option with highest expected 
utility; i.e., the best combination of utility and likelihood of snacks in the two options. Conversely, if 
subjects minimize surprise (KL divergence), they will also try to maximize entropy over outcomes; in 
other words, the number of distinct snacks they could win (see equation 4 in methods for details). It is 
known that in these types of choice paradigms risk, defined as variance over the utilities of outcomes, 
plays an important role in predicting choices, where some subjects will exhibit risk-seeking and oth-
ers risk-avoiding behavior1,22. Therefore, we included risk as an additional explanatory variable, when 
comparing economic to belief-based models. To assess whether entropy was indeed a significant factor 
in choice behavior, we performed a linear regression to predict subject’s decisions on each trial using 
the difference in expected utility (based on individual rating of the snacks), risk and entropy of the two 
options.

We found that both expected utility and entropy were significant determinants of choice behavior 
(one-sample test: β = . , = .t17 06 7 16expected utility expected utility ,  = ,df p19expected utility expected utility <0.001;  
  β = . , = .t0 93 3 12entropy gain entropy , = , = .df p19 0 005entropy entropy ; see Fig. 3A and Table 1 for a list of the 
regression coefficients). This means that subjects displayed a tendency to maximize both expected utility 
and the entropy over outcomes. Given that half the trials presented options of similar utility but different 

Figure 2. Task. Subjects had to choose between two offers containing between one and four different 
snacks. Snacks could only appear once in each option, but the same could appear in each offer. Subjects 
knew that at each trial one of the snacks of their chosen offer would be selected randomly (without 
knowing which one) and at the end of the experiment they would receive one of the selected snacks. Thus, 
the number of snacks in the chosen option determined the probability of winning one of snacks. In this 
example, subjects had a 1/3-chance of winning a cookie in the left and a 1/4 –chance of winning a cookie in 
the right option.
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Figure 3. Model-based analysis: (A) Individual regression coefficients for entropy as obtained in a linear 
regression predicting choices. (B) Exceedance probabilities in random-effects Bayesian model comparison 
provide evidence for an active inference model (with individually estimated prior precision) over expected 
utility theory and equivalent models with a fixed precision. Note that these exceedance probabilities are 
computed with respect to the BIC-scores of the models and thus adhere to an accuracy-complexity trade-off.

Subject Expected utility Risk Entropy gain

1 6.33** − 2.83* − 0.02

2 8.36** 10.47** − 1.18**

3 8.14** − 7.49 − 0.82**

4 16.96** − 10.28** 0.86**

5 14.94** 5.63 1.87**

6 9.31** − 13.47** 0.46*

7 0.47 8.59** − 1.27**

8 24.04** 19.66** 1.71**

9 27.63** − 15.88 1.05**

10 43.80** 15.02 2.78**

11 6.89** 4.16 4.46**

12 15.97** − 39.49** 1.12**

13 17.75** 10.84** 0.01

14 19.06** 6.22* 1.69**

15 18.78** − 36.16** 0.28

16 10.82** − 7.33** 0.83**

17 9.11** − 45.29* 0.97**

18 30.61** 6.47 0.57**

19 33.43** − 20.44* 1.39**

20 18.76** 15.06** 1.88**

Table 1.  Individual regression coefficients in the linear regression for the difference in expected 
utility, risk and entropy in the two options (statistical significance indicated with an asterisk). Positive 
coefficients indicate a positive choice bias (seeking), whereas negative coefficients indicate avoidance. Thus, 
all 20 subjects tried to maximize expected utility, 10 out of 20 subjects were risk-seeking and 16 out of 20 
maximized entropy gain.
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entropy—which were central for testing our hypothesis—we repeated the above analysis for these trials 
only. Again, we found that the two factors were necessary to explain choice behavior (one-sample test: 
β = . , = .t17 39 6 87expected utility expected utility , = ,df p19expected utility expected utility < β. = . ,0 001; 0 98entropy gain   

= .t 3 14entropy , = , = .df p19 0 005entropy entropy ).
These results are consistent with a tendency to maximize entropy in addition to maximizing expected 

utility (while seeking or avoiding risk). Furthermore, using the Bayesian Information Criterion (BIC) to 
approximate the evidence for the linear regression models, we compared a model including expected 
utility and risk to one containing expected utility, risk and entropy. In keeping with active inference, ran-
dom effects Bayesian model comparison23 provided strong evidence for the model that included entropy 
(exceedance probability ϕ =  0.99; exceedance probability for manipulated trials only ϕ =  0.92). Random 
effects Bayesian model comparison is a variational Bayesian method that treats each model as random 
variable and estimates the parameters of a Dirichlet distribution describing the probability that each 
model generated the data (see23 for details). Crucially, this (random effects) method is more robust to 
outliers than classical fixed effects metrics.

Further, we performed a more formal (model-based) analysis, using a framework for modelling behav-
ior on Markov Decision Processes8,15, allowing for a comparison between KL-control and utility maximi-
zation within the framework of active inference. This framework has been successfully applied to various 
problems in decision-making14,24,25. Furthermore, it is ideally suited to compare (belief-based) active 
inference formulations of choice to expected utility theory: by predicting trial-by-trial choice-probabilities 
that can be compared with observed behavior (see Fig 4 for an example).

In our active inference scheme, a key role is played by the precision (i.e. confidence or γ) of beliefs 
about policies or choices, which controls the stochasticity of behavior15,24. Precision accounts for an 
agent’s sensitivity to its beliefs about choosing an option—as mandated by either minimizing surprise 
(active inference) or maximizing expected utility (economic models). Precision therefore plays the role 
of a sensitivity or inverse temperature parameter in conventional softmax choice rules. Crucially, active 
inference suggests that subjects optimize their precision as well as their choices, where each subject has 

Figure 4. Comparing active inference and value maximization predictions of choice. (A) illustrates a 
trial where two options differ in number of snacks but only marginally in their expected utility based on 
a subject’s individual preference of snacks (displayed in (B)). Active inference predicts a choice tendency 
towards the option with more snacks (shown in (C)) while value maximization predicts a choice preference 
for the option with (marginally) higher expected utility (shown in (D)).
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prior beliefs about precision (these prior beliefs are parameterized with a gamma distribution). Using 
constrained maximum likelihood, we estimated each subject’s prior precision as well as their preferences 
for snacks, and compared a model based on KL-control to a model based on expected utility (see meth-
ods for details). To test whether differences in behavior were indeed accounted for by differences in their 
prior distribution over precision, we evaluated the evidence (BIC) for both schemes when allowing prior 
precision (alpha or the scale parameter of a gamma distribution with beta =  1) to be a free parameter 
(included in the parameter count of the BIC scores) and when using a fixed prior over precision for all 
subjects (with parameters alpha =  4 and beta =  1). Precision updates during choices are discussed in 
detail elsewhere8,15,24: briefly, when casting choice behavior as active inference, precision (i.e., confidence) 
becomes a hidden variable that has to be inferred on a trial-by-trial basis. This implies that precision 
ceases to be an ad hoc parameter (such as inverse temperature in conventional models) but acquires a 
context-sensitive Bayes optimal solution. However, in our one-shot (single trial) snack lottery, precision 
updates are precluded and choices depend only on prior precision. This prior precision models the sto-
chasticity of each subject’s behavior.

As in the previous analysis, Bayesian model comparison provided strong evidence in favor of an active 
inference model of choice behavior that included subject-specific prior precision (exceedance probability 
ϕ = .0 88; = .R 0 58winning model

2 ; see Fig 3B). Furthermore, we found that the maximum likelihood esti-
mators of subject’s preferences in the winning model correlated highly with their preference rating of the 
snacks (r =  0.90), providing a reassuring validation of our estimation scheme.

In summary, we performed two analyses of behavior in our task, one based on an explicit measure 
of subject’s preferences (or subjective utility)—as indicated in a rating of the snacks after the experi-
ment—and the other based on an implicit measure, obtained by estimating preferences using observed 
behavior. We used the explicit measure in a simple linear regression analysis, testing for effects of 
expected utility, risk and entropy on behavior. The implicit estimates were obtained via (constrained) 
maximum-likelihood estimation in a computational (Markov decision process) model of the task, which 
compared active inference to expected utility theory. In brief, we found compelling evidence for surprise 
minimization in choice behavior in both analyses, suggesting that behavior is governed by both expected 
utility and entropy maximization. Furthermore, we found a strong relationship between the explicit and 
implicit measures of subject’s preferences.

Surprise minimization makes predictions about choice behavior that are at variance with classical 
economic theories, when the expected utilities of two options are very similar but the entropies over 
outcomes differ. In these cases, expected utility theory predicts that the two options would be chosen 
with the same probability, whereas surprise minimization predicts a choice bias for the option that has 
the higher entropy (as displayed in Figs 1 and 4). Therefore, one should expect to find entropy-seeking 
behavior when expected utility theory predicts a (close to) random choice. To test this, we looked at these 
trials specifically and asked whether subjects prefer higher entropy options. We used the two winning 
models based on active inference and expected utility theory, respectively, and tested their predictions in 
trials where the former model predicted a clear preference for one option but the latter predicted a (close 
to) random choice or even a preference for the other option (see methods for details). We found that in 
those trials, subjects displayed a high proportion (75%) of responses that were in line with surprise 
minimization rather than expected utility maximization, significantly larger than 50% on the group level 
( = . , = , = .t df p3 59 17 0 002). This suggests that in trials with similar expected utilities, subjects 
adhered to surprise minimization; i.e., maximizing the entropy over outcomes, rather than economic 
models of decision-making.

Finally, active inference is also applicable to choice behavior in the absence of utilities over outcomes. 
In other words, subjects should also try to maximize the entropy over outcomes that have no explicit 
utility. We tested this prediction in an additional control experiment, where snacks were replaced by 
different colors (see Fig 5A for an illustration). In this task, 19 healthy subjects had to choose between 
two options that contained between one and four different colors (out of six colors in total – using colors 
that subjects neither strongly liked nor disliked). After having chosen one of the two options, subjects 
were subsequently presented with one of the colors in their chosen option (each with equal probability), 
in form of a square on the screen. Crucially, while subjects may form implicit preferences for certain 
colors, this experiment lies outside the domain of classical economic theory and utility maximization 
given that the outcomes were purely perceptual. Still, surprise minimization predicts that subjects should 
prefer options with higher entropy over outcomes, i.e. with more colors.

To test this hypothesis, we used a regression model with observed choices (+ 1 for left and − 1 for 
right) as the response variable and the difference in entropy between the right and left options as an 
explanatory variable. To ensure our inference was not confounded by any implicit preference for specific 
colours, we used colour as a confound (+ 1 for present in the right option, − 1 for present in the left 
option and 0 if present in both or neither).

As in the main experiment, we used the standard summary statistic approach to random effects anal-
ysis, using a one tailed t-test on (subject specific) regression coefficients reporting entropy effects (shown 
in Fig 5B). We confirmed the anticipated (positive) effect for entropy ( = .t 1 76, =df 18, = .p 0 047). The 
significance of this effect increased when including the entropy times colour interaction as a cofound 
(i.e., the implicit value of a colour was allowed to vary with the number of choice items it was presented 
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with; = .t 2 08, =df 18, = .p 0 026). Furthermore, we again found a high correlation between implicit 
(estimated) preferences for the colors and subjects’ explicit preferences from ratings after the experiment 
( = .r 0 77). In six subjects this correlation was remarkably high (greater than 0.9).

Discussion
Our findings provide evidence for a belief-based formulation of human choice behavior that is motivated 
by minimizing surprise rather that maximizing utility alone. We designed a task in which we could test 
a key prediction of active inference that is at variance with expected utility theory. Minimizing surprise 
means that our choices should maximize both the utility and the entropy over outcomes, which can be 
understood as expected surprise or ‘keeping ones options open’. In other words, given the choice between 
a single outcome and multiple outcomes with the same utility, we prefer the latter. Note the apparent 
paradox of minimizing surprise about states we visit and expecting ourselves to maximize entropy. This is 
paradoxical because entropy is average surprise. The apparent paradox is resolved by noting that entropy 
is also average information, which has previously been associated with novelty, information gain or epis-
temic value26. Put simply, our results indicate that we expect ourselves to maximize utility, while keeping 
our options open. Our results thus provide evidence that choice behavior maximizes both expected 
utility and epistemic value – as opposed to just expected utility.

Our paradigm included trials in which the expected utility of two options containing snacks were 
very similar but one of the options provided higher entropy over outcomes. Given that we assigned 
equal probabilities to all outcomes (snacks), entropy over outcomes corresponds to the number of snacks 
offered in an option. The only way to change entropy over outcomes is to have a different number of dif-
ferent snacks in the two options. Therefore, it was impossible to design trials that had identical expected 
utility. However, we ensured that the expected utilities of options were very similar by only selecting 
snacks that had similar utilities (based on their pre-experiment rating and by excluding snacks that were 
explicitly liked or disliked). Furthermore, we ensured half of the trials had similar expected utilities but 
different entropies. These trials were the most interesting ones from the perspective of our hypothesis: 
expected utility theory would predict a roughly random choice in these trials, whereas active infer-
ence predicts a choice bias towards the option with higher entropy or number of different (but equally 
preferred) snacks. Additionally, we carried out a control task, in which subjects ‘played for’ different 
colors—as opposed to snacks they could eat, thus removing (explicit) utility as a determinant of choice 
behavior. We again found that subjects showed a substantial bias to maximize the entropy over outcomes, 
indicating that the concept of surprise minimization also applies to choice behavior beyond the domain 
of behavioral economics.

A natural question arising from these considerations concerns the developmental and evolution-
ary advantage of maximizing the entropy over outcomes—in addition to maximizing utility or value. 
Why should we care about entropy at all and not choose the option that has highest utility or reward? 
Generally, our findings speak to a probabilistic formulation of cognition and brain function. Put simply, 
if the brain is a Bayesian inference machine27–30, choice behavior is an active inference process that min-
imizes surprise. In turn, this requires choices that minimize the difference between expected and pre-
ferred (unsurprising) outcomes, leading to risk-sensitive or KL control. This means that choices should 
be sensitive to both expected utility and entropy over outcomes, not expected utility alone. Maximizing 

Figure 5. Control task. (A) In a control experiment, subjects were asked to make a choice between options 
containing colors rather than snacks. After every trial, subjects could see one of the colors of their chosen 
option on the screen in form of a square. Crucially, the number and type of colors differed between the two 
options, containing between one and four different colors. (B) In a simple regression analysis, we found a 
substantial choice bias to choose options that maximize the entropy over outcomes as predicted by surprise 
minimization.
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the entropy over outcomes and thus ‘keeping options open’ may have adaptive advantages that endow 
choice behavior with flexibility. This may be particularly important when different options or policies 
have a similar expected utility. Furthermore, not committing to a specific outcome may also be important 
for ensuring a continuous updating of an agent’s beliefs in a changing environment. Finally, maximizing 
the entropy over outcomes complies with the principle of maximum-entropy31, which says that the least 
biased inference results from adopting the prior that has maximal entropy.

Crucially, our findings contextualize classical models based on expected utility maximization1–3. A 
choice bias for maximizing entropy over outcomes may be particularly important for understanding 
seemingly ‘irrational’ behavior, such as not always choosing the most valuable option. Some previous 
accounts have assumed similar biases in choice, such as self-signaling or ‘diagnostic utility’ of outcomes 
in addition to classical (economic) utilities32 or curiosity-based accounts of decision making that max-
imize Bayesian surprise33,34. A rigorous formalism that casts choice behavior as minimizing surprise, 
however, has not been tested so far.

It has been proposed that modern economic models of choice can be characterized on a continuum 
between purely value-based accounts, where the brain is assumed to compute and represent the values 
of all options, and purely comparison based accounts, such that the utilities or values of different out-
comes are determined through comparison with other available outcomes35. In the model we presented, 
surprise minimization does not make strong assumptions about how these utilities are formed. The 
crucial prediction of surprise minimization is that agents encode expectations about future states, which 
reflect their preferences under a given model of the environment. However, it should be noted that the 
‘sum-to-one’ constraint of beliefs over outcomes makes it impossible to consider the preference for one 
outcome in isolation from the others. This suggests a close relationship between surprise minimization 
and comparison-based approaches to choice behavior, which highlight the relative nature of utility rep-
resentations or even sensory experiences (for a review see35). How these expectations are acquired (or 
change in time via learning) remains a key question. Previous accounts, in the context of ‘stochastic 
expected utility theory’ have assumed random fluctuations in choice (over utilities, model parameters 
or actual choice behavior) that may explain why subjects do not always choose the option with highest 
expected utility36,37. In contrast, surprise minimization suggests that these apparent ‘noisy decisions’ may 
in fact reflect an additional choice bias; namely, maximizing the entropy over outcomes. Furthermore, 
keeping options open may also have an important relationship to so called ‘fast-and-frugal-heuristics’ 
and bounded rationality38. Maximizing entropy may be particularly advantageous if an agent is una-
ble to assess the expected utilities of options under given policies due to time or resource constraints. 
Bounded rationality in the context of surprise minimization and, more specifically, the relationship 
between entropy and expected utility maximization is another important field for future research and 
may relate to ideas about Bayesian model selection and averaging in the brain, as well as restricting the 
model space for subsequent inference on parameters or hidden variables39.

We do not argue that entropy gain cannot be accommodated within a utilitarian model, as in the 
example of exploration gain or novelty bonuses40. However, casting choice as surprise minimization 
mandates such preferences, as opposed to introducing ad hoc variables to describe choice tendencies. In 
this regard, our framework offers a more formal basis, contextualizing observations such as Pavlovian 
biases or perceptual preferences (e.g., for more items on the screen). Furthermore, active inference is 
equipped with a process theory; i.e., variational message passing, which offers a biologically plausible 
model of how the requisite computations might be implemented in the brain. The notion that entropy 
or information gain can be integrated with expected utility in a principled and normative fashion—to 
prescribe behavior—suggests that it should also operate in the absence of any preferences or subjective 
utilities. This observation suggests that one can predict behavior in the absence of utility, as illustrated in 
our control (playing for colors) experiment. Interestingly, the active inference formulation was inspired 
by accounts of information foraging in visual searches, specifically, the resolution of uncertainty afforded 
by saccadic eye movements to salient locations in the visual field41. Formally, the entropy in this context 
can be associated with the relative entropy or Bayesian surprise42 associated with a sampling of the visual 
field. If this reasoning holds, it should be possible to use the active inference scheme described above to 
model saccadic eye movements; provided they can be modelled in a discrete state space. We will pursue 
this in future work.

In conclusion, we provide evidence for a belief-based (active inference) formulation of choice, based 
on surprise minimization, as opposed to a classical economic treatment of decision-making as maximiz-
ing value or utility. This evidence suggests that agents maximize both expected utility and entropy. These 
considerations offer a new perspective on cognition and brain function as Bayesian inference processes 
and provide a new set of tools for understanding the mind as a (generative) model of the environment. 
These tools may provide important insights into how agents ‘make sense out of the world’ and how cer-
tain aberrancies in these processes may induce psychopathological behavior43–46.

Methods
Subjects. 20 subjects (16 female) participated the first (main) study. In addition, three incomplete 
data-sets were collected (post-experiment ratings not recorded) which were excluded from the analysis. 
All subjects were university students from the University of Salzburg (Austria) and had a mean age of 
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24.8 ( = .std 4 55, = ,range [19 36]). Written informed consent was acquired from all participants and 
they were reimbursed with €10 for taking part in the study. In the second (control) study, 19 subjects (15 
female) participated, which were recruited from the same subject pool. These subjects had a mean age 
of 22.9 ( = .std 3 59, = ,range [18 30]) and were reimbursed with €15 for their participation. All experi-
mental protocols were approved by the local ethics committee of the University of Salzburg. All methods 
were carried out in accordance with the approved guidelines.

Task (main study). Subjects underwent 1.5 hours of testing in a behavioral testing room at the 
University of Salzburg. After obtaining written informed consent and reading an instruction sheet, sub-
jects reported when they had most recently eaten (mean: 4.5 hours) and how hungry they felt—on a scale 
from 1 to 11 (median: 8). Since the experiment involved playing a lottery for real snacks, we ensured 
that subjects would be sufficiently hungry to care about their win by instructing them not to eat for at 
least 3.5 hours prior to the experiment.

Subsequently, subjects rated a total of 18 snacks (each snack was rated three times), which were 
placed next to the screen (and could be seen by subjects). For the following experiment, we used the six 
snacks in the middle of the ranking. This ensured that subjects did not play for snacks they disliked or 
preferred—and therefore decisions were sufficiently deliberative. Importantly, we only used snacks that 
are known to have little or no variance in their taste (such as particular brands of chocolate bars, cookies 
or crisps), as opposed to snacks with indefinite properties (such as fruit). This ensured that subjects had 
a precise idea about the snack they might win at the end of the experiment.

After the initial rating, subjects played three sessions consisting of 100 trials (~15 minutes). Each trial 
involved a choice between two options or ‘lotteries’ displayed on the left and right side of the screen. The 
two options differed in number and type of snacks offered to the subject and could contain between one 
and four different snacks. Subjects had to decide whether they wanted to choose the left or right lottery, 
knowing that at the end of the experiment one of their choices would be selected randomly and the 
chosen lottery would be played out. The term ‘lottery’ here simply means that the subjects would win 
one of the snacks contained in the chosen option, each with equal probability ( ( ) = / )P snack N1 Snacks in option . 
For example, if their selected choice was an option containing only one snack there was full certainty 
over their win, whereas an option with four snacks gave a ¼ -chance of winning one of them. To ensure 
that we had enough trials differentiating between an expected utility and KL-control prediction of choices 
(see Fig 4 in main text), we designed half the trials to have a similar expected utility but different entropy 
gains; i.e., a different number of snacks available in the two options. In these trials, we ensured the dif-
ference in expected utility of the two offers did not exceed a fifth of the difference between the least and 
most preferred snack, based on the subject’s rating prior to the experiment.

After completing the third session, subjects were presented with their win and, subsequently, rated 
the snacks again to test whether their preferences had changed over the course of the experiment. We 
found that ratings indeed became more clearly defined as indicated by a weak but significant correlation 
between prior- and post-experiment ratings ( = .r 0 45, < .p 0 01). Thus, we used the post-experiment 
rating for the subsequent regression analysis to estimate subject’s individual differences in expected utility 
and risk. This assumes that the post-experiment rating reflected subject’s preferences more precisely that 
the pre-experiment rating. This assumption was confirmed by a substantially higher correlation between 
modelled preferences in our constrained maximum likelihood estimation, based on subject’s behavior, 
and post-experiment ratings compared to pre-experiment ratings ( = .− ,r 0 42pre rating estimates , 

= .− ,r 0 90post rating estimates ). We therefore concluded that the post-experiment ratings reflected true prefer-
ences, while avoiding any confounds due to a preference-change over the course of the experiment.

Task (control study). The control task closely resembled the original task but presented different 
colors as opposed to different snacks in the two options (see Fig 5A for an illustration). After an initial 
rating of colors, we selected six colors that were neither explicitly preferred nor disliked. Subsequently, 
Subjects played three sessions consisting of 60 trials (each lasting for about 15 minutes). The first 50 trials 
of the first session were treated as training trials, because—in contrast to the main study—subjects had 
to establish an association between the colors and outcomes (and possibly develop implicit preferences). 
The two options in each trial could contain between one and four different colors. Subjects had to make a 
decision after every trial and were subsequently presented with one of the colors of their chosen option in 
form of a square (displayed for four seconds). The outcome of a trial was again sampled from a uniform 
distribution conditioned on the number of different colors of the chosen option. After completing the 
experiment, subjects were asked to rate the colors again.

Behavioral analysis and modelling. All statistical analysis was performed using MATLAB version 
R2012a. Initially, we conducted a regression analysis to assess whether choices (between the two options) 
would be predicted by expected utility, risk and entropy gain. To do so, we calculated the difference in 
expected utility, risk and entropy gain on a trial-by-trial basis between the two options and tested which 
of these differences predicted choices. For each option, expected utility was defined as the sum of the 
values of the snacks multiplied with their respective probability: = ∑ ( ) ⋅ ( )=EU P i U ioption i

N
1

Snacks , where 
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( )U i  was obtained individually from subject’s preference-rating. Risk was defined as variance over the 
utilities in the two options: = ∑ =

( ( ( )) − ( ))

−
Riskoption i

N Mean U i U i
N1 1

Snacks
Snacks

2
-. Finally, entropy gain was operational-

ized as entropy over outcome-probabilities: = ∑ ( ) ⋅ ( ( ))=EG P i P ilogoption i
N

1
Snacks . If any of these factors 

influenced choice behaviour, then the respective difference in this measure between the two options 
should be a significant predictor of observed trial-by-trial choices. Individual regression coefficients for 
each subject are displayed in Table 1. To assess overall significance, we performed a second-level analysis 
(one-sample t-test) on the regression coefficients of expected utility and entropy gain.

Subsequently, we performed model comparisons for models with and without entropy gain. We com-
puted model accuracy, i.e. the log-likelihoods of the observed responses given a general linear (regres-
sion) model either with expected utility and risk alone or with entropy gain as additional factor. Based on 
these log-likelihoods, we calculated the Bayesian Information Criterion (BIC, see Table 2) for each of the 
two models—penalizing for the number of parameters used—and performed random effects Bayesian 
model comparison23 based on these values using the function spm_BMS of SPM12b (Wellcome Trust 
Centre for Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm).

Subsequently, we performed a model comparison based on an active inference formulation of behav-
ior, casting the task as a Markov Decision Process (MDP) described in more detail elsewhere8. We 
specified the routine implemented in the spm_MDP_offer.m routine of the DEM toolbox of SPM12 to 
provide trial-specific probabilities of choice that could be compared with observed behavior. Crucially, 
this routine rests on a KL-control formulation of choice, such that agents try to minimize the difference 
or KL-divergence between ‘likely’ and ‘desired’ outcomes:

π π( ) = − ( , ) ( ) ( )Q s D P s s P s m[ ] 3t KL T t T

Equation 3 states that the value of a policy π at a particular state st is determined by the (negative) dif-
ference between a probability distribution over outcome states sT given the current state and that policy 
and a probability distribution over outcome states given an agent’s model; i.e., where an agent believes it 
will end up in. These two distributions reflect what an agent believes is likely to happen and what it 
expects to happen, given its preferences over outcomes. More formally, these distributions refer to pos-
terior beliefs about outcomes conditioned on beliefs about its current state (and policy) and prior beliefs 
about outcomes. By minimizing this difference, agents select policies that bring controlled outcomes 
closer to preferred ones. Crucially, this KL-divergence can be rewritten as

Subject Without Entropy Gain With Entropy Gain

1 − 263.65 − 269.33

2 − 349.92 − 326.58

3 − 310.91 − 303.47

4 − 196.36 − 192.60

5 − 257.96 − 219.29

6 − 320.01 − 320.78

7 − 425.83 − 391.45

8 − 222.29 − 201.65

9 − 199.72 − 193.29

10 − 264.21 − 206.91

11 − 358.05 − 185.59

12 − 282.37 − 268.50

13 − 197.28 − 202.96

14 − 183.95 − 167.31

15 − 276.33 − 280.31

16 − 263.10 − 258.83

17 − 373.01 − 354.93

18 − 321.27 − 321.06

19 − 239.36 − 218.97

20 − 158.55 − 144.98

Sum − 5464.11 − 5028.81

Table 2.  Individual BIC scores for the general linear models with and without entropy gain.

http://www.fil.ion.ucl.ac.uk/spm
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Equation 4 shows that minimizing the KL-divergence implies maximizing the entropy over outcomes 
and the sum of the utility of outcomes multiplied with their probability. The first term reflects entropy 
gain, and can be maximized if agents select options that ensure a wide probability distribution over 
outcomes. The second term reflects standard expected utility based on an agent’s beliefs where it should 
end up in.

Crucially, one can compare the predictions from this formulation to standard expected utility the-
ory by ‘switching off ’ the entropy term in equation 4. Thus, we used a KL-control and expected utility 
version of this routine to predict choice behavior and compared their respective model evidences (dis-
played in Table  3), while we estimated individual priors on precision and preferences for the snacks 
using constrained maximum likelihood estimation (alpha constrained between 2 and 8 and preferences 
constrained to lie between − 10 and 10) (see Table  4 for individual parameter estimates). Crucially, 
therefore, the estimation of free parameters was unrelated to the specifics of the computational scheme 
that was used to predict subjects’ preferences for one of the two options, where the individual prior on 
precision can be thought of as an inverse temperature parameter in classical softmax choice rules and 
the preferences for snacks as classical utility functions over outcomes.

Subject
KL-control  
Estimated Precision

Expected Utility  
Estimated Precision

KL-control  
Fixed Precision

Expected Utility  
Fixed Precision

1 − 239.29 − 229.49 − 255.92 − 226.17

2 − 293.71 − 222.86 − 309.05 − 218.61

3 − 348.59 − 308.61 − 445.15 − 306.91

4 − 170.69 − 199.34 − 172.67 − 206.51

5 − 203.75 − 242.30 − 202.28 − 250.35

6 − 325.17 − 325.38 − 339.77 − 322.21

7 -369.97 − 275.09 − 511.98 − 270.76

8 − 157.99 − 180.25 − 189.65 − 216.45

9 − 207.68 − 219.64 − 202.67 − 225.79

10 − 180.67 − 257.31 − 217.53 − 274.46

11 − 239.47 − 420.98 − 250.11 − 415.55

12 − 271.68 − 272.59 − 273.76 − 272.76

13 − 184.31 − 163.09 − 188.14 − 187.69

14 − 159.99 − 197.43 − 189.95 − 227.23

15 − 208.62 − 228.41 − 203.39 − 235.74

16 − 178.65 − 194.74 − 197.41 − 217.26

17 − 376.28 − 384.78 − 399.06 − 380.96

18 − 173.00 − 194.42 − 196.05 − 221.05

19 − 228.63 − 257.17 − 224.27 − 260.03

20 − 161.95 − 182.65 − 202.54 − 230.35

Sum − 4680.10 − 4956.56 − 5171.36 − 5166.86

Table 3.  Individual BIC scores for the KL-control and expected utility models with estimated or fixed 
precision.
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Furthermore, in active inference not just beliefs about behavior have to be optimized but also the 
certainty or precision of these beliefs has a (Bayes) optimal solution. Choices, therefore, result from 
beliefs about behavior multiplied with precision γ:

π γ π( ) = ⋅ ( ) ( )lnP s Q s 5t t

The important implications of precision for behavior and its putative neuronal underpinnings are dis-
cussed elsewhere15,24. In brief, precision simply plays the role of an inverse temperature making subjects 
more or less sensitive for the value of choosing an option. Since precision potentially also plays an 
important role in this context, we compared a version of the KL-control (and expected utility scheme) 
in which precision was optimized and in which precision was fixed across-trials (to a standard value of 
four for all subjects: =alpha 4). Bayesian model comparison provided strong evidence in favor of an 
active inference model of choice in which precision was estimated for each subject individually (exceed-
ance probability ϕ = .0 88).

To analyze behavior in trials where surprise minimization predicted a preference for one of the two 
options (due to a difference in entropy over outcomes) whereas expected utility maximization predicted 
a similar bias for both options or even a preference for the opposite option (as displayed in Fig. 4), we 
selected trials in which the active inference scheme predicted a probability of acceptance for one of the 
two options of 70% or above whereas the expected utility scheme predicted a propensity to accept of 
55% or lower (for that option). We then computed the relative proportion for each subject to select the 
option favored by active inference, but not by expected utility theory. Two subjects had to be excluded 
from this analysis because for them the predictions of the model predictions did not differ enough, such 
that no trials met the criteria explained above.

The analysis of the control study used the same linear regression approach as adopted in the main 
study; however, the within subject model included (confounding) explanatory variables accounting for 
any implicit effects of each color in the available options (as opposed to effects based upon explicit utility 
ratings in the first study). To avoid ceiling effects, only trials with less than four options were included 
in the regression.
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