206 research outputs found

    Demo: An Interoperability Development and Performance Diagnosis Environment

    Get PDF
    Interoperability is key to widespread adoption of sensor network technology, but interoperable systems have traditionally been difficult to develop and test. We demonstrate an interoperable system development and performance diagnosis environment in which different systems, different software, and different hardware can be simulated in a single network configuration. This allows both development, verification, and performance diagnosis of interoperable systems. Estimating the performance is important since even when systems interoperate, the performance can be sub-optimal, as shown in our companion paper that has been conditionally accepted for SenSys 2011

    Taking smart space users into the development loop

    Full text link

    Chapter 34 - Every Moment Counts: Synchrophasors for Distribution Networks with Variable Resources

    Full text link
    Historically, with mostly radial power distribution and one-way power flow, it was only necessary to evaluate the envelope of design conditions, e.g., peak loads or fault currents, rather than continually observe the operating state. But the growth of distributed energy resources introduces variability, uncertainty, and opportunities to recruit diverse resources for grid services. This chapter addresses how the direct measurement of voltage phase angle might enable new strategies for managing distribution networks with diverse, active components.Comment: 14 pages, Chapter, Renewable Energy Integration, Academic, 201

    Impacts of water level on metabolism and transient storage in vegetated lowland rivers: insights from a mesocosm study

    Get PDF
    Transient storage zones for water represent potential hot spots for metabolic activity in streams. In lowland rivers, the high abundance of submerged vegetation can increase water transient storage, bioreactive surface areas and, ultimately, in-stream metabolic activity. Changes in flow resulting from climatic and anthropogenic factors that influence the presence of aquatic vegetation can also, thereby, impact in-stream metabolism and nutrient cycling. We investigated the effects of water column depth on aquatic vegetation cover and its implications on water transient storage and associated metabolic activity in stream mesocosms (n=8) that represent typical conditions of lowland streams. Continuous injections of metabolically reactive (resazurin-resorufin) tracers were conducted and used to quantify hydraulic transport and whole-mesocosm aerobic respiration. Acetate, a labile carbon source, was added during a second stage of the tracer injection to investigate metabolic responses. We observed both higher vegetation coverage and resazurin uptake velocity, used as a proxy of mesocosm respiration, with increasing water column depth. The acetate injection had a slight, positive effect on metabolic activity. A hydrodynamic model estimated the water transport and retention characteristics and first-order reactivity for three mesocosms. These results suggest that both the vegetated surface water and sediments contribute to metabolically active transient storage within the mesocosms, with vegetation having a greater influence on ecosystem respiration. Our findings suggest that climate and external factors that affect flow and submerged vegetation of lowland rivers will result in changes in stream respiration dynamics and that submerged vegetation are a particularly important and sensitive location for stream respiration

    FireDeX: a Prioritized IoT Data Exchange Middleware for Emergency Response

    Get PDF
    International audienceReal-time event detection and targeted decision making for emerging mission-critical applications, e.g. smart fire fighting, requires systems that extract and process relevant data from connected IoT devices in the environment. In this paper, we propose FireDeX, a cross-layer middleware that facilitates timely and effective exchange of data for coordinating emergency response activities. FireDeX adopts a publish-subscribe data exchange paradigm with brokers at the network edge to manage prioritized delivery of mission-critical data from IoT sources to relevant subscribers. It incorporates parameters at the application, network, and middleware layers into a data exchange service that accurately estimates end-to-end performance metrics (e.g. delays, success rates). We design an extensible queueing theoretic model that abstracts these cross-layer interactions as a network of queues, thereby making it amenable for rapid analysis. We propose novel algorithms that utilize results of this analysis to tune data exchange configurations (event priorities and dropping policies) while meeting situational awareness requirements and resource constraints. FireDeX leverages Software-Defined Networking (SDN) methodologies to enforce these configurations in the IoT network infrastructure. We evaluate its performance through simulated experiments in a smart building fire response scenario. Our results demonstrate significant improvement to mission-critical data delivery under a variety of conditions. Our application-aware prioritization algorithm improves the value of exchanged information by 36% when compared with no prioritization; the addition of our network-aware drop rate policies improves this performance by 42% over priorities only and by 94% over no prioritization

    Time-averaged ventilation for optimized control of variable-air-volume systems

    Full text link
    Typical Variable Air Volume (VAV) terminals spend the majority of time at their minimum airflow setpoints. These are often higher than the minimum ventilation requirements defined by code, resulting in excess energy use and a risk of over-cooling the spaces. We developed and tested a Time-Averaged Ventilation (TAV) control strategy in an institutional building on the UC Berkeley campus to address this issue. Whenever a zone does not require cooling, TAV alternates the VAV damper between partially open and fully closed so that the average airflow matches a predefined ventilation setpoint. Compared to the existing, base case scenario using single-max VAV logic, this strategy reduced the mean zone airflow fraction from 0.44 to 0.27 during the intervention period. The corresponding reductions in average heating, cooling, and fan power were 41%, 23%, and 15% respectively. In addition to being programmed directly in a native control system, TAV may be applied via sMAP as a low-cost retrofit strategy in any building that has a BACnet network and direct digital control (DDC) to each VAV terminal

    Articulatory feature-based methods for acoustic and audio-visual speech recognition: Summary from the 2006 JHU Summer Workshop.

    Get PDF
    We report on investigations, conducted at the 2006 Johns HopkinsWorkshop, into the use of articulatory features (AFs) for observation and pronunciation models in speech recognition. In the area of observation modeling, we use the outputs of AF classiers both directly, in an extension of hybrid HMM/neural network models, and as part of the observation vector, an extension of the tandem approach. In the area of pronunciation modeling, we investigate a model having multiple streams of AF states with soft synchrony constraints, for both audio-only and audio-visual recognition. The models are implemented as dynamic Bayesian networks, and tested on tasks from the Small-Vocabulary Switchboard (SVitchboard) corpus and the CUAVE audio-visual digits corpus. Finally, we analyze AF classication and forced alignment using a newly collected set of feature-level manual transcriptions

    Deep-seated xenoliths and xenocrysts from Sytykanskaya pipe: evidence for the evolution of the mantle beneath Alakit, Yakutia, Russia

    Get PDF
    Heavy mineral concentrate and xenoliths from late autolithic breccia and porphyritic kimberlite of the Sytykanskaya pipe (Alakit field, Yakutia, Russia) were studied by EPMA and LA-ICPMS methods to obtain PTXfO2 diagrams. Trends in P- Fe# - CaO - fO2 for minerals from the porphyritic kimberlite show greater discontinuities than xenocrysts from the breccia. Xenoliths show the widest variation at all pressures. Protokimberlite systems are marked by ilmenite PT points that range from the lithosphere base (7.5 GPa) to a pyroxenite lens situated at intermediate depths (5 - 3.5 GPa) with increasing Cr because of AFC that formed two metasomatic groups with differing Fe#Ol (∼ 10-12 and 13-15). The first Opx-Gar-based mantle geotherm for the Alakit field based on 10 mineral associations is close to the 35 mW/m2 geotherm at 6.5 GPa and 600°C, i.e. near to the Moho. The oxidation state for the megacrystalline ilmenites in the lithosphere base is higher than for other kimberlites in Yakutia. Calculated parental melts for clinopyroxene and garnet by xenocrysts from the breccia show highly inclined linear REE patterns with deep HFSE troughs similar to differentiated protokimberlite magmas. Melts calculated for metasomatic xenoliths have less inclined slopes without troughs in spider diagrams. Garnets reveal S-shaped REE patterns. Calculated melts for garnets from graphite-bearing Cr-websterites located mainly in middle part of the mantle column show slightly inclined convex REE patterns and Ba-Sr troughs with variable enrichment in Nb-Ta-U. The calculated parental melts for clinopyroxenes have inclined REE spectra with a depression in HFSE. Metasomatic clinopyroxenes have enriched patterns with Ba, Zr peaks. 40Ar-39Ar analyses of dispersed phlogopites from the Alakit mantle xenoliths yield a Proterozoic (1154 Ma) age, corresponding to continental arc metasomatism. Alkaline and Ti-rich veins with alkali amphiboles close to richterite formed at ∼1015 Ma and mark a plume event in Rodinia mantle. The∼600-550 Ma stage relates to Rodinia break-up. The last metasomatic event near 385 Ma is related to the protokimberlite

    Second Generation Leptoquark Search in p\bar{p} Collisions at s\sqrt{s} = 1.8 TeV

    Full text link
    We report on a search for second generation leptoquarks with the D\O\ detector at the Fermilab Tevatron ppˉp\bar{p} collider at s\sqrt{s} = 1.8 TeV. This search is based on 12.7 pb1^{-1} of data. Second generation leptoquarks are assumed to be produced in pairs and to decay into a muon and quark with branching ratio β\beta or to neutrino and quark with branching ratio (1β)(1-\beta). We obtain cross section times branching ratio limits as a function of leptoquark mass and set a lower limit on the leptoquark mass of 111 GeV/c2^{2} for β=1\beta = 1 and 89 GeV/c2^{2} for β=0.5\beta = 0.5 at the 95%\ confidence level.Comment: 18 pages, FERMILAB-PUB-95/185-
    corecore