466 research outputs found

    Human Judgment and Autonomous Weaponry: What Does it Mean?

    Get PDF
    Senior Project submitted to The Division of Social Studies of Bard Colleg

    Safety in maritime oil sector: Content analysis of machinery space fire hazards

    Get PDF
    An in-depth study of the practice within the maritime oil industry was undertaken to ascertain safety issues in seafaring vessels. It was more concentrated on the type of accidents that occur in machine spaces of seafaring vessels in this industry. The main focus of the research was streamlined to fire in machinery spaces. The literature review later concentrated on two of such incidences, they are oil spill and fire events. An investigation was done to assess those factors which actually contribute or are in association to fire outbreak. A content analysis methodology was used to investigate the associative relationships to fire outbreak with the aid of NVivo 9.0 software. The investigation focused on 15 key in-depth reports on machinery space incidences which were uploaded into the software. The results indicate that leakages on hot surfaces were the major causes of fire hazards in seafaring vessels. The results from using this methodology also highlighted two more fire hazards that were not so apparent in previous studies. They are generator fire and compressors fire. The results supported other studies about leakages on hot surfaces as a major contributor, but also clearly show that there are other hazardous factors of fire in machinery spaces that require further investigation

    Atom-optics hologram in the time domain

    Full text link
    The temporal evolution of an atomic wave packet interacting with object and reference electromagnetic waves is investigated beyond the weak perturbation of the initial state. It is shown that the diffraction of an ultracold atomic beam by the inhomogeneous laser field can be interpreted as if the beam passes through a three-dimensional hologram, whose thickness is proportional to the interaction time. It is found that the diffraction efficiency of such a hologram may reach 100% and is determined by the duration of laser pulses. On this basis a method for reconstruction of the object image with matter waves is offered.Comment: RevTeX, 13 pages, 8 figures; minor grammatical change

    Disentangling correlated scatter in cluster mass measurements

    Full text link
    The challenge of obtaining galaxy cluster masses is increasingly being addressed by multiwavelength measurements. As scatters in measured cluster masses are often sourced by properties of or around the clusters themselves, correlations between mass scatters are frequent and can be significant, with consequences for errors on mass estimates obtained both directly and via stacking. Using a high resolution 250 Mpc/h side N-body simulation, combined with proxies for observational cluster mass measurements, we obtain mass scatter correlations and covariances for 243 individual clusters along ~96 lines of sight each, both separately and together. Many of these scatters are quite large and highly correlated. We use principal component analysis (PCA) to characterize scatter trends and variations between clusters. PCA identifies combinations of scatters, or variations more generally, which are uncorrelated or non-covariant. The PCA combination of mass measurement techniques which dominates the mass scatter is similar for many clusters, and this combination is often present in a large amount when viewing the cluster along its long axis. We also correlate cluster mass scatter, environmental and intrinsic properties, and use PCA to find shared trends between these. For example, if the average measured richness, velocity dispersion and Compton decrement mass for a cluster along many lines of sight are high relative to its true mass, in our simulation the cluster's mass measurement scatters around this average are also high, its sphericity is high, and its triaxiality is low. Our analysis is based upon estimated mass distributions for fixed true mass. Extensions to observational data would require further calibration from numerical simulations, tuned to specific observational survey selection functions and systematics.Comment: 18 pages, 12 figures, final version to appear in MNRAS, helpful changes from referee and others incorporate

    Q(weak): First Direct Measurement of the Proton\u27s Weak Charge

    Get PDF
    The Q(weak) experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q(2) = 0.025 ( GeV/c)(2). The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. The results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis

    Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals

    Get PDF
    Creating highly electrically conducting cables from macroscopic aggregates of carbon nanotubes, to replace metallic wires, is still a dream. Here we report the fabrication of iodine-doped, double-walled nanotube cables having electrical resistivity reaching ∼10−7 Ω.m. Due to the low density, their specific conductivity (conductivity/weight) is higher than copper and aluminum and is only just below that of the highest specific conductivity metal, sodium. The cables exhibit high current-carrying capacity of 104∼105 A/cm2 and can be joined together into arbitrary length and diameter, without degradation of their electrical properties. The application of such nanotube cables is demonstrated by partly replacing metal wires in a household light bulb circuit. The conductivity variation as a function of temperature for the cables is five times smaller than that for copper. The high conductivity nanotube cables could find a range of applications, from low dimensional interconnects to transmission lines

    Contrast sensitivity for motion detection and direction discrimination in adolescents with autism spectrum disorders and their siblings

    Get PDF
    The magnocellular (M) pathway hypothesis proposes that impaired visual motion perception observed in individuals with Autism Spectrum Disorders (ASD) might be mediated by atypical functioning of the subcortical M pathway, as this pathway provides the bulk of visual input to cortical motion detectors. To test this hypothesis, we measured luminance and chromatic contrast sensitivity, thought to tap M and Parvocellular (P) pathway processing, respectively. We also tested the hypothesis that motion processing is impaired in ASD using a novel paradigm that measures motion processing while controlling for detectabilty. Specifically, this paradigm compares contrast sensitivity for detection of a moving grating with contrast sensitivity for direction-of-motion discrimination of that same moving grating. Contrast sensitivities from adolescents with ASD were compared to typically-developing adolescents, and also unaffected siblings of individuals with ASD (SIBS). The results revealed significant group differences on P, but not M, pathway processing, with SIBS showing higher chromatic contrast sensitivity than both participants with ASD and TD participants. This atypicality, unique to SIBS, suggests the possible existence of a protective factor in these individuals against developing ASD. The results also revealed impairments in motion perception in both participants with ASD and SIBS, which may be an endophenotype of ASD. This impairment may be driven by impairments in motion detectors and/or by reduced input from neural areas that project to motion detectors, the latter possibility being consistent with the notion of reduced connectivity between neural areas in ASD

    Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Celastrol is an active ingredient of the traditional Chinese medicinal plant <it>Tripterygium Wilfordii</it>, which exhibits significant antitumor activity in different cancer models <it>in vitro </it>and <it>in vivo</it>; however, the lack of information on the target and mechanism of action of this compound have impeded its clinical application. In this study, we sought to determine the mode of action of celastrol by focusing on the processes that mediate its anticancer activity.</p> <p>Methods</p> <p>The downregulation of heat shock protein 90 (HSP90) client proteins, phosphorylation of c-Jun NH2-terminal kinase (JNK), and cleavage of PARP, caspase 9 and caspase 3 were detected by western blotting. The accumulation of reactive oxygen species (ROS) was analyzed by flow cytometry and fluorescence microscopy. Cell cycle progression, mitochondrial membrane potential (MMP) and apoptosis were determined by flow cytometry. Absorption spectroscopy was used to determine the activity of mitochondrial respiratory chain (MRC) complexes.</p> <p>Results</p> <p>Celastrol induced ROS accumulation, G2-M phase blockage, apoptosis and necrosis in H1299 and HepG2 cells in a dose-dependent manner. N-acetylcysteine (NAC), an antioxidative agent, inhibited celastrol-induced ROS accumulation and cytotoxicity. JNK phosphorylation induced by celastrol was suppressed by NAC and JNK inhibitor SP600125 (SP). Moreover, SP significantly inhibited celastrol-induced loss of MMP, cleavage of PARP, caspase 9 and caspase 3, mitochondrial translocation of Bad, cytoplasmic release of cytochrome c, and cell death. However, SP did not inhibit celastrol-induced ROS accumulation. Celastrol downregulated HSP90 client proteins but did not disrupt the interaction between HSP90 and cdc37. NAC completely inhibited celastrol-induced decrease of HSP90 client proteins, catalase and thioredoxin. The activity of MRC complex I was completely inhibited in H1299 cells treated with 6 μM celastrol in the absence and presence of NAC. Moreover, the inhibition of MRC complex I activity preceded ROS accumulation in H1299 cells after celastrol treatment.</p> <p>Conclusion</p> <p>We identified ROS as the key intermediate for celastrol-induced cytotoxicity. JNK was activated by celastrol-induced ROS accumulation and then initiated mitochondrial-mediated apoptosis. Celastrol induced the downregulation of HSP90 client proteins through ROS accumulation and facilitated ROS accumulation by inhibiting MRC complex I activity. These results identify a novel target for celastrol-induced anticancer activity and define its mode of action.</p
    corecore