104 research outputs found

    Excitation and decay of projectile-like fragments formed in dissipative peripheral collisions at intermediate energies

    Full text link
    Projectile-like fragments (PLF:15<=Z<=46) formed in peripheral and mid-peripheral collisions of 114Cd projectiles with 92Mo nuclei at E/A=50 MeV have been detected at very forward angles, 2.1 deg.<=theta_lab<=4.2 deg. Calorimetric analysis of the charged particles observed in coincidence with the PLF reveals that the excitation of the primary PLF is strongly related to its velocity damping. Furthermore, for a given V_PLF*, its excitation is not related to its size, Z_PLF*. For the largest velocity damping, the excitation energy attained is large, approximately commensurate with a system at the limiting temperatureComment: 5 pages, 6 figure

    Interplay of initial deformation and Coulomb proximity on nuclear decay

    Full text link
    Alpha particles emitted from an excited projectile-like fragment (PLF*) formed in a peripheral collision of two intermediate-energy heavy ions exhibit a strong preference for emission towards the target-like fragment (TLF). The interplay of the initial deformation of the PLF* caused by the reaction, Coulomb proximity, and the rotation of the PLF* results in the observed anisotropic angular distribution. Changes in the shape of the angular distribution with excitation energy are interpreted as being the result of forming more elongated initial geometries in the more peripheral collisions.Comment: 4 figure

    Fragment Isospin as a Probe of Heavy-Ion Collisions

    Full text link
    Isotope ratios of fragments produced at mid-rapidity in peripheral and central collisions of 114Cd ions with 92Mo and 98Mo target nuclei at E/A = 50 MeV are compared. Neutron-rich isotopes are preferentially produced in central collisions as compared to peripheral collisions. The influence of the size (A), density, N/Z, E*/A, and Eflow/A of the emitting source on the measured isotope ratios was explored by comparison with a statistical model (SMM). The mid-rapidity region associated with peripheral collisions does not appear to be neutron-enriched relative to central collisions.Comment: 12 pages including figure

    Fragment Production in Non-central Collisions of Intermediate Energy Heavy Ions

    Full text link
    The defining characteristics of fragment emission resulting from the non-central collision of 114Cd ions with 92Mo target nuclei at E/A = 50 MeV are presented. Charge correlations and average relative velocities for mid-velocity fragment emission exhibit significant differences when compared to standard statistical decay. These differences associated with similar velocity dissipation are indicative of the influence of the entrance channel dynamics on the fragment production process

    d-alpha Correlation functions and collective motion in Xe+Au collisions at E/A=50 MeV

    Get PDF
    The interplay of the effects of geometry and collective motion on d-α\alpha correlation functions is investigated for central Xe+Au collisions at E/A=50 MeV. The data cannot be explained without collective motion, which could be partly along the beam axis. A semi-quantitative description of the data can be obtained using a Monte-Carlo model, where thermal emission is superimposed on collective motion. Both the emission volume and the competition between the thermal and collective motion influence significantly the shape of the correlation function, motivating new strategies for extending intensity interferometry studies to massive particles.Comment: Accepted for publication on Physics Letters

    Size and asymmetry of the reaction entrance channel: influence on the probability of neck production

    Full text link
    The results of experiments performed to investigate the Ni+Al, Ni+Ni, Ni+Ag reactions at 30 MeV/nucleon are presented. From the study of dissipative midperipheral collisions, it has been possible to detect events in which Intermediate Mass Fragments (IMF) production takes place. The decay of a quasi-projectile has been identified; its excitation energy leads to a multifragmentation totally described in terms of a statistical disassembly of a thermalized system (T≃\simeq4 MeV, E∗≃^*\simeq4 MeV/nucleon). Moreover, for the systems Ni+Ni, Ni+Ag, in the same nuclear reaction, a source with velocity intermediate between that of the quasi-projectile and that of the quasi-target, emitting IMF, is observed. The fragments produced by this source are more neutron rich than the average matter of the overall system, and have a charge distribution different, with respect to those statistically emitted from the quasi-projectile. The above features can be considered as a signature of the dynamical origin of the midvelocity emission. The results of this analysis show that IMF can be produced via different mechanisms simultaneously present within the same collision. Moreover, once fixed the characteristics of the quasi-projectile in the three considered reactions (in size, excitation energy and temperature), one observes that the probability of a partner IMF production via dynamical mechanism has a threshold (not present in the Ni+Al case) and increases with the size of the target nucleus.Comment: 16 pages, 7 figures, accepted for publication on Nuclear Physics
    • 

    corecore