288 research outputs found

    The sensory acceptance of fibre-enriched cereal foods:a meta-analysis

    Get PDF
    Improved understanding of the sensory responses to fibre fortification may assist manufacturers and health promotion efforts. The effects of fibre fortification (or modified ingredients) on sensory acceptability of baked cereal foods (bread, cookies, muffins) were estimated by linear random-effects meta-analysis of twenty eligible studies (869 panellists, 34% male). As little as 2 g per 100 g fortification caused moderate–large reductions in overall acceptability, flavour acceptability, and appearance acceptability in most items, with cookies most negatively affected. Fortification of base nonfortified foods with low initial acceptability improved acceptability; however, at higher basic levels, fortification lowered acceptability. Fortification improved texture acceptability of muffins and bread with low base acceptability, but lowered texture acceptability when base acceptability was high. Flavour improvement of muffins with fortification decreased with increasing base food acceptability. Fibre fortification of baked cereal foods lowers acceptability, but food format and base food acceptability affect the magnitude and direction of responses. Refining fibre fortification approaches could improve consumer uptake

    miRNA-140-5p: new avenue for pulmonary arterial hypertension drug development?

    Get PDF
    Pulmonary arterial hypertension (PAH) is a rare but fatal disease. Pathologically, PAH is characterised by sustained vasoconstriction and progressive obliteration of small pulmonary arteries through a process of medial thickening, intimal fibrosis and the formation of angioproliferative lesions. Current treatments target the sustained vasoconstriction via either the prostacyclin, endothelin or nitric oxide pathway but do little to address the underlying progressive proliferative vascular disease. Dysregulated expression of microRNA (miR) has been identified in PAH and we have recently highlighted reduced miR-140-5p in patients with PAH. Replacement of miR-140-5p attenuated disease in animal models with the regulation of Smurf1, a E3 ubiquitin ligase targeting BMPR2 as one identified mechanism. These data highlight Smurf1 inhibition as a treatment for PAH

    Equine Rhinitis A Virus and Its Low pH Empty Particle: Clues Towards an Aphthovirus Entry Mechanism?

    Get PDF
    Equine rhinitis A virus (ERAV) is closely related to foot-and-mouth disease virus (FMDV), belonging to the genus Aphthovirus of the Picornaviridae. How picornaviruses introduce their RNA genome into the cytoplasm of the host cell to initiate replication is unclear since they have no lipid envelope to facilitate fusion with cellular membranes. It has been thought that the dissociation of the FMDV particle into pentameric subunits at acidic pH is the mechanism for genome release during cell entry, but this raises the problem of how transfer across the endosome membrane of the genome might be facilitated. In contrast, most other picornaviruses form ‘altered’ particle intermediates (not reported for aphthoviruses) thought to induce membrane pores through which the genome can be transferred. Here we show that ERAV, like FMDV, dissociates into pentamers at mildly acidic pH but demonstrate that dissociation is preceded by the transient formation of empty 80S particles which have released their genome and may represent novel biologically relevant intermediates in the aphthovirus cell entry process. The crystal structures of the native ERAV virus and a low pH form have been determined via highly efficient crystallization and data collection strategies, required due to low virus yields. ERAV is closely similar to FMDV for VP2, VP3 and part of VP4 but VP1 diverges, to give a particle with a pitted surface, as seen in cardioviruses. The low pH particle has internal structure consistent with it representing a pre-dissociation cell entry intermediate. These results suggest a unified mechanism of picornavirus cell entry

    GSFC OSTM, Jason-l and TOPEX POD Update

    Get PDF
    The OSTM (Jason-2) has been in orbit for three years (since June 2008), and the full suite of altimeter data from TOPEX/Poseidon, Jason-I and Jason-2 now span nearly twenty years since the launch of TOPEX in 1992. Issues that affect the stability of the orbits through time and the orbit accuracy include the reference frame, the radiation pressure models for the altimeter satellites and the fidelity of the dynamic force model, including time-variable gravity, as well as the performance of the individual tracking systems. We have conducted detailed analyses of the new ITRF2008 reference frame and find only a small effect on global mean sea level compared to ITRF2005, although we note an improvement in POD quality over the most recent time periods for Jason-2. In the past year we have developed a new time series of orbits for TOPEX/Poseidon, Jason-I, and Jason-2 based on the ITRF2008 reference frame using SLR and DORIS data and for Jason-2 using GPS data. In addition, we have continued to experiment with improvements to the radiation pressure model for the altimeter satellites in particular the Jason satellites since these nonconservative force model errors now rank as the most outstanding source of error on altimeter satellite POD. In the previous (ITRF2005-based) and current (ITRF2008-based) orbits we have relied on a simplified time-variable gravity (TVG) model, derived from GRACE solutions. We have recently experimented with improvements using higher fidelity TVG models (both temporally and spatially) and report on the results. We have computed a time series of GPS-only reduced-dynamic orbits at GSFC, and used these in conjunction with the SLR-DORIS dynamic and reduced-dynamic orbits to assess reference fiame stability with respect to the different tracking systems for both ITRF2005 and ITRF2008. We show through internal (GSFConly) and external comparisons (with other analysis centers) that the radial orbit accuracy for Jason-2 remains at I cm

    Introducing novel approaches for examining the variability of individuals' physical activity

    Get PDF
    Tudor-Locke and colleagues previously assessed steps/day for 1 year. The aim of this study was to use this data set to introduce a novel approach for the investigation of whether individual's physical activity exhibits periodicity fluctuating round a mean and, if so, the degree of fluctuation and whether the mean changes over time. Twenty-three participants wore a pedometer for 365 days, recorded steps/day and whether the day was a workday. Fourier transform of each participant's daily steps data showed the physical activity had a periodicity of 7 days in half of the participants, matching the periodicity of the workday pattern. Activity level remained stable in half of the participants, decreased in ten participants and increased in two. In conclusion, the 7-day periodicity of activity in half of the participants and correspondence with the workday pattern suggest a social or environmental influence. The novel analytical approach introduced herein allows the determination of the periodicity of activity, the degree of variability in activity that is tolerated during day-to-day life and whether the activity level is stable. Results from the use of these methodologies in larger data sets may enable a more focused approach to the design of interventions that aim to increase activity

    ALMA observations of massive molecular gas reservoirs in dusty early-type galaxies

    Get PDF
    Unresolved gas and dust observations show a surprising diversity in the amount of interstellar matter in early-type galaxies. Using ALMA observations we resolve the ISM in z∼0.05 early-type galaxies. From a large sample of early-type galaxies detected in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) we selected five of the dustiest cases, with dust masses Md ∼several× 107M⊙, with the aim of mapping their submillimetre continuum and 12CO(2-1) line emission distributions. These observations reveal molecular gas disks. There is a lack of associated, extended continuum emission in these ALMA observations, most likely because it is resolved out or surface brightness limited, if the dust distribution is as extended as the CO gas. However, two galaxies have central continuum ALMA detections. An additional, slightly offset, continuum source is revealed in one case, which may have contributed to confusion in the Herschel fluxes. Serendipitous continuum detections further away in the ALMA field are found in another case. Large and massive rotating molecular gas disks are mapped in three of our targets, reaching a few× 109M⊙. One of these shows evidence of kinematic deviations from a pure rotating disc. The fields of our two remaining targets contain only smaller, weak CO sources, slightly offset from the optical galaxy centres. These may be companion galaxies seen in ALMA observations, or background objects. These heterogeneous findings in a small sample of dusty early-type galaxies reveal the need for more such high spatial resolution studies, to understand statistically how dust and gas are related in early-type galaxies

    Massive post-starburst galaxies at z > 1 are compact proto-spheroids

    Get PDF
    We investigate the relationship between the quenching of star formation and the structural transformation of massive galaxies, using a large sample of photometrically-selected poststarburst galaxies in the UKIDSS UDS field. We find that post-starburst galaxies at highredshift (z > 1) show high Sérsic indices, significantly higher than those of active star-forming galaxies, but with a distribution that is indistinguishable from the old quiescent population. We conclude that the morphological transformation occurs before (or during) the quenching of star formation. Recently quenched galaxies are also the most compact; we find evidence that massive post-starburst galaxies (M_ > 1010:5 M_) at high redshift (z > 1) are on average smaller than comparable quiescent galaxies at the same epoch. Our findings are consistent with a scenario in which massive passive galaxies are formed from three distinct phases: (1) gas-rich dissipative collapse to very high densities, forming the proto-spheroid; (2) rapid quenching of star formation, to create the “red nugget” with post-starburst features; (3) a gradual growth in size as the population ages, perhaps as a result of minor mergers

    Serendipitous Geodesy from Bennu's Short-Lived Moonlets

    Get PDF
    The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx; or OREx) spacecraft arrived at its target, near-Earth asteroid (101955) Bennu, on December 3, 2018. The OSIRIS-REx spacecraft has since collected a wealth of scientific information in order to select a suitable site for sampling. Shortly after insertion into orbit on December 31, 2018, particles were identified in starfield images taken by the navigation camera (NavCam 1). Several groups within the OSlRlS-REx team analyzed the particle data in an effort to better understand this newfound activity of Bennu and to investigate the potential sensitivity of the particles to Bennu's geophysical parameters. A number of particles were identified through automatic and manual methods in multiple images, which could be turned into short sequences of optical tracking observations. Here, we discuss the precision orbit determination (OD) effort focused on these particles at NASA GSFC, which involved members of the Independent Navigation Team (INT) in particular. The particle data are combined with other OSIRIS-REx tracking data (radiometric from OSN and optical landmark data) using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation software. We present the results of our study, particularly those pertaining to the gravity field of Bennu. We describe the force modeling improvements made to GEODYN specifically for this work, e.g., with a raytracing-based modeling of solar radiation pressure. The short-lived, low-flying moonlets enable us to determine a gravity field model up to a relatively high degree and order: at least degree 6 without constraints, and up to degree 10 when applying Kaula-like regularization. We can backward- and forward-integrate the trajectory of these particles to the ejection and landing sites on Bennu. We assess the recovered field by its impact on the OSIRIS-REx trajectory reconstruction and prediction quality in the various mission phases (e.g., Orbital A, Detailed Survey, and Orbital B)
    corecore