17 research outputs found

    Sample deposition onto cryo-EM grids: from sprays to jets and back

    Get PDF
    Despite the great strides made in the field of single-particle cryogenic electron microscopy (cryo-EM) in microscope design, direct electron detectors and new processing suites, the area of sample preparation is still far from ideal. Traditionally, sample preparation involves blotting, which has been used to achieve high resolution, particularly for well behaved samples such as apoferritin. However, this approach is flawed since the blotting process can have adverse effects on some proteins and protein complexes, and the long blot time increases exposure to the damaging air-water interface. To overcome these problems, new blotless approaches have been designed for the direct deposition of the sample on the grid. Here, different methods of producing droplets for sample deposition are compared. Using gas dynamic virtual nozzles, small and high-velocity droplets were deposited on cryo-EM grids, which spread sufficiently for high-resolution cryo-EM imaging. For those wishing to pursue a similar approach, an overview is given of the current use of spray technology for cryo-EM grid preparation and areas for enhancement are pointed out. It is further shown how the broad aspects of sprayer design and operation conditions can be utilized to improve grid quality reproducibly

    Оценка воздействия дамбы в д. Босоногово Бердюжского района на окружающую среду Тюменской области

    Get PDF
    В статье рассмотрена положительная и отрицательная оценка воздействия дамбы в д. Босоногово Бердюжского района на окружающую среду Тюменской области.The article considers a positive and negative assessment of the impact of a dam in the village of Bosonogovo, Berdyuga district, on the environment of the Tyumen region

    Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation.

    Get PDF
    Membrane proteins are traditionally extracted and purified in detergent for biochemical and structural characterisation. This process is often costly and laborious, and the stripping away of potentially stabilising lipids from the membrane protein of interest can have detrimental effects on protein integrity. Recently, styrene-maleic acid (SMA) co-polymers have offered a solution to this problem by extracting membrane proteins directly from their native membrane, while retaining their naturally associated lipids in the form of stable SMA lipid particles (SMALPs). However, the inherent nature and heterogeneity of the polymer renders their use challenging for some downstream applications - particularly mass spectrometry (MS). While advances in cryo-electron microscopy (cryo-EM) have enhanced our understanding of membrane protein:lipid interactions in both SMALPs and detergent, the resolution obtained with this technique is often insufficient to accurately identify closely associated lipids within the transmembrane annulus. Native-MS has the power to fill this knowledge gap, but the SMA polymer itself remains largely incompatible with this technique. To increase sample homogeneity and allow characterisation of membrane protein:lipid complexes by native-MS, we have developed a novel SMA-exchange method; whereby the membrane protein of interest is first solubilised and purified in SMA, then transferred into amphipols or detergents. This allows the membrane protein and endogenously associated lipids extracted by SMA co-polymer to be identified and examined by MS, thereby complementing results obtained by cryo-EM and creating a better understanding of how the lipid bilayer directly affects membrane protein structure and function

    Need for speed: Examining protein behavior during cryoEM grid preparation at different timescales

    Get PDF
    A host of new technologies are under development to improve the quality and reproducibility of cryoelectron microscopy (cryoEM) grid preparation. Here we have systematically investigated the preparation of three macromolecular complexes using three different vitrification devices (Vitrobot, chameleon, and a time-resolved cryoEM device) on various timescales, including grids made within 6 ms (the fastest reported to date), to interrogate particle behavior at the air-water interface for different timepoints. Results demonstrate that different macromolecular complexes can respond to the thin-film environment formed during cryoEM sample preparation in highly variable ways, shedding light on why cryoEM sample preparation can be difficult to optimize. We demonstrate that reducing time between sample application and vitrification is just one tool to improve cryoEM grid quality, but that it is unlikely to be a generic “silver bullet” for improving the quality of every cryoEM sample preparation

    Attenuation of Skeletal Muscle and Renal Injury to the Lower Limb following Ischemia-Reperfusion Using mPTP Inhibitor NIM-811.

    Get PDF
    INTRODUCTION: Operation on the infrarenal aorta and large arteries of the lower extremities may cause rhabdomyolysis of the skeletal muscle, which in turn may induce remote kidney injury. NIM-811 (N-metyl-4-isoleucine-cyclosporine) is a mitochondria specific drug, which can prevent ischemic-reperfusion (IR) injury, by inhibiting mitochondrial permeability transition pores (mPTP). OBJECTIVES: Our aim was to reduce damages in the skeletal muscle and the kidney after IR of the lower limb with NIM-811. MATERIALS AND METHODS: Wistar rats underwent 180 minutes of bilateral lower limb ischemia and 240 minutes of reperfusion. Four animal groups were formed called Sham (receiving vehicle and sham surgery), NIM-Sham (receiving NIM-811 and sham surgery), IR (receiving vehicle and surgery), and NIM-IR (receiving NIM-811 and surgery). Serum, urine and histological samples were taken at the end of reperfusion. NADH-tetrazolium staining, muscle Wet/Dry (W/D) ratio calculations, laser Doppler-flowmetry (LDF) and mean arterial pressure (MAP) monitoring were performed. Renal peroxynitrite concentration, serum TNF-alpha and IL-6 levels were measured. RESULTS: Less significant histopathological changes were observable in the NIM-IR group as compared with the IR group. Serum K+ and necroenzyme levels were significantly lower in the NIM-IR group than in the IR group (LDH: p<0.001; CK: p<0.001; K+: p = 0.017). Muscle mitochondrial viability proved to be significantly higher (p = 0.001) and renal function parameters were significantly better (creatinine: p = 0.016; FENa: p<0.001) in the NIM-IR group in comparison to the IR group. Serum TNF-alpha and IL-6 levels were significantly lower (TNF-alpha: p = 0.003, IL-6: p = 0.040) as well as W/D ratio and peroxynitrite concentration were significantly lower (p = 0.014; p<0.001) in the NIM-IR group than in the IR group. CONCLUSION: NIM-811 could have the potential of reducing rhabdomyolysis and impairment of the kidney after lower limb IR injury

    The bacterial magnesium transporter MgtA reveals highly selective interaction with specific cardiolipin species

    No full text
    Abstract: The bacterial magnesium transporter A (MgtA) is a specialized P-type ATPase important for Mg2+ import into the cytoplasm; disrupted magnesium homeostasis is linked to intrinsic ribosome instability and antibacterial resistance in Salmonella strains. Here, we show that MgtA has functional specificity for cardiolipin 18:1. Still, it reaches maximum activity only in combination with cardiolipin 16:0, equivalent to the major components of native cardiolipin found in E. coli membranes. Native mass spectrometry indicates the presence of two binding sites for cardiolipin, agreeing with the kinetic studies revealing that a cooperative relationship likely exists between the two cardiolipin variants. This is the first experimental evidence of cooperative effects between lipids of the same class, with only minor variations in their acyl chain composition, acting on a membrane protein. In summary, our results reveal that MgtA exhibits a highly complex interaction with one cardiolipin 18:1 and one cardiolipin 16:0, affecting protein activity and stability, contributing to our understanding of the particular interactions between lipid environment and membrane proteins. Further, a better understanding of Mg2+ homeostasis in bacteria, due to its role as a virulence regulator, will provide further insights into the regulation and mechanism of bacterial infections

    The bacterial magnesium transporter MgtA reveals highly selective interaction with specific cardiolipin species

    No full text
    The bacterial magnesium transporter A (MgtA) is a specialized P-type ATPase important for Mg2+ import into the cytoplasm; disrupted magnesium homeostasis is linked to intrinsic ribosome instability and antibacterial resistance in Salmonella strains. Here, we show that MgtA has functional specificity for cardiolipin 18:1. Still, it reaches maximum activity only in combination with cardiolipin 16:0, equivalent to the major components of native cardiolipin found in E. coli membranes. Native mass spectrometry indicates the presence of two binding sites for cardiolipin, agreeing with the kinetic studies revealing that a cooperative relationship likely exists between the two cardiolipin variants. This is the first experimental evidence of cooperative effects between lipids of the same class, with only minor variations in their acyl chain composition, acting on a membrane protein. In summary, our results reveal that MgtA exhibits a highly complex interaction with one cardiolipin 18:1 and one cardiolipin 16:0, affecting protein activity and stability, contributing to our understanding of the particular interactions between lipid environment and membrane proteins. Further, a better understanding of Mg2+ homeostasis in bacteria, due to its role as a virulence regulator, will provide further insights into the regulation and mechanism of bacterial infections
    corecore