515 research outputs found

    Predicting Invasion Risk Using Measures of Introduction Effort and Environmental Niche Models

    Get PDF
    The Chinese mitten crab (Eriocheir sinensis) is native to east Asia, is established throughout Europe, and is introduced but geographically restricted in North America. We developed and compared two separate environmental niche models using genetic algorithm for rule set prediction (GARP) and mitten crab occurrences in Asia and Europe to predict the species\u27 potential distribution in North America. Since mitten crabs must reproduce in water with ≥15‰ salinity, we limited the potential North American range to freshwater habitats within the highest documented dispersal distance (1260 km) and a more restricted dispersal limit (354 km) from the sea. Applying the higher dispersal distance, both models predicted the lower Great Lakes, most of the eastern seaboard, the Gulf of Mexico and southern extent of the Mississippi River watershed, and the Pacific northwest as suitable environment for mitten crabs, but environmental match for southern states (below 35° N) was much lower for the European model. Use of the lower range with both models reduced the expected range, especially in the Great Lakes, Mississippi drainage, and inland areas of the Pacific Northwest. To estimate the risk of introduction of mitten crabs, the amount of reported ballast water discharge into major United States ports from regions in Asia and Europe with established mitten crab populations was used as an index of introduction effort. Relative risk of invasion was estimated based on a combination of environmental match and volume of unexchanged ballast water received (July 1999–December 2003) for major ports. The ports of Norfolk and Baltimore were most vulnerable to invasion and establishment, making Chesapeake Bay the most likely location to be invaded by mitten crabs in the United States. The next highest risk was predicted for Portland, Oregon. Interestingly, the port of Los Angeles/Long Beach, which has a large shipping volume, had a low risk of invasion. Ports such as Jacksonville, Florida, had a medium risk owing to small shipping volume but high environmental match. This study illustrates that the combination of environmental niche- and vector-based models can provide managers with more precise estimates of invasion risk than can either of these approaches alone

    Scale-dependent Associations among Fish Predation, Littoral Habitat, and Distributions of Crayfish Species

    Get PDF
    To predict how species establish and disperse within novel communities, the spatial scale at which competition, predation, and habitat interact must be understood. We explored how these factors affect the distribution and abundance of the exotic crayfishes Orconectes rusticus and O. propinquus and the native O. virilis at both the site-specific and whole-lake scales in northern Wisconsin lakes. During summer 1990, we quantified crayfish, fish predators, and fish diets in cobble and macrophyte sites in Trout Lake, comparing resulting patterns to those in 21 lakes surveyed during summer 1987. Within and across lakes, fish abundance was unrelated to habitat. Within Trout Lake, O. rusticus and O. propinquus were common in both cobble and macrophyte. Orconectes virilis was restricted to macrophyte, probably due to strong displacement by the invaders in cobble. Across lakes, O. rusticus increased where habitat was more than 16.7% cobble, O. propinquus was generally rare, and O. virilis abundance was unrelated to cobble. Crayfish were generally small in cobble and large in macrophyte, perhaps because of habitat-specific, size-selective fish predation or because large crayfish leave cobble when it no longer provides refuge. Orconectes virilis, the largest of three congeners, may have a size refuge in macrophyte but not in cobble. Across lakes, O. rusticus was only abundant when fish biomass was low; O. virilis abundance varied positively with fish. Effects of fish predation and habitat on the ability of invaders Orconectes rusticus and O. propinquus to establish and replace O. virilis appear to be scale dependent. At local (site-specific) scales, cobble likely interacts with selective predation for O. virilis to allow the invaders to establish and replace the native. At the lake-wide scale, high cobble facilitates invaders but predation may curb their successful dispersal and establishment at new sites. Models of community assembly and invasions need to incorporate scale dependencies in habitat availability and biotic interactions to effectively assess the invasion potential of novel species

    Network analysis of ballast-mediated species transfer reveals important introduction and dispersal patterns in the Arctic

    Full text link
    Rapid climate change has wide-ranging implications for the Arctic region, including sea ice loss, increased geopolitical attention, and expanding economic activity, including a dramatic increase in shipping activity. As a result, the risk of harmful non-native marine species being introduced into this critical region will increase unless policy and management steps are implemented in response. Using big data about shipping, ecoregions, and environmental conditions, we leverage network analysis and data mining techniques to assess, visualize, and project ballast water-mediated species introductions into the Arctic and dispersal of non-native species within the Arctic. We first identify high-risk connections between the Arctic and non-Arctic ports that could be sources of non-native species over 15 years (1997-2012) and observe the emergence of shipping hubs in the Arctic where the cumulative risk of non-native species introduction is increasing. We then consider how environmental conditions can constrain this Arctic introduction network for species with different physiological limits, thus providing a species-level tool for decision-makers. Next, we focus on within-Arctic ballast-mediated species dispersal where we use higher-order network analysis to identify critical shipping routes that may facilitate species dispersal within the Arctic. The risk assessment and projection framework we propose could inform risk-based assessment and management of ship-borne invasive species in the Arctic

    Predicting impact of freshwater exotic species on native biodiversity: Challenges in spatial scaling

    Get PDF
    Global homogenization of biota is underway through worldwide introduction and establishment of nonindigenous (exotic) species. Freshwater ecologists should devote more attention to exotic species for two reasons. First, exotics provide an opportunity to test hypotheses about what characteristics of species or habitats are related to successful establishment or invasibility, respectively. Second, predicting which species will cause large ecological change is an important challenge for natural resource managers. Rigorous statistical relationships linking species characteristics to probability of establishment or of causing ecological impacts are needed. In addition, it is important to know how reliable different sorts of experiments are in guiding predictions. We address this issue with different spatial scales of experiments testing the impact of two predators on native snail assemblages in northern Wisconsin USA lakes: an exotic crayfish, the rusty crayfish (Orconectes rusticus); and a native fish predator, the pumpkinseed sunfish (Lepomis gibossus). For the crayfish, laboratory experiments, a field cage experiment, and a snapshot survey of 21 lakes gave consistent results: the crayfish reduced abundance and species richness of native snails. Laboratory and field experiments suggested that pumpkinseed sunfish should have a similar impact, but the lake survey suggested little impact. Unfortunately, no algorithms exist to guide scaling up from small-scale experiments to the whole-lake, long-term management scale. To protect native biodiversity, management of freshwater exotic species should be targeted on lakes or drainages that are both vulnerable to colonization by an exotic, and that harbour endemic species. Management should focus on preventing introduction because eradication after establishment is usually not possible.The following grants funded our research: NSFBSR85-00775, NSFBSR89-07407, EPA CR820290-0T -0 (to DML)

    Forecasting the Impacts of Silver and Bighead Carp on the Lake Erie Food Web

    Get PDF
    Nonindigenous bigheaded carps (Bighead Carp Hypophthalmichthys nobilis and Silver Carp H. molitrix; hereafter, “Asian carps” [AC]) threaten to invade and disrupt food webs and fisheries in the Laurentian Great Lakes through their high consumption of plankton. To quantify the potential effects of AC on the food web in Lake Erie, we developed an Ecopath with Ecosim (EwE) food web model and simulated four AC diet composition scenarios (high, low, and no detritus and low detritus with Walleye Sander vitreus and Yellow Perch Perca flavescens larvae) and two nutrient load scenarios (the 1999 baseline load and 2× the baseline [HP]). We quantified the uncertainty of the potential AC effects by coupling the EwE model with estimates of parameter uncertainty in AC production, consumption, and predator diets obtained using structured expert judgment. Our model projected mean ± SD AC equilibrium biomass ranging from 52 ± 34 to 104 ± 75 kg/ha under the different scenarios. Relative to baseline simulations without AC, AC invasion under all detrital diet scenarios decreased the biomass of most fish and zooplankton groups. The effects of AC in the HP scenario were similar to those in the detrital diet scenarios except that the biomasses of most Walleye and Yellow Perch groups were greater under HP because these fishes were buffered from competition with AC by increased productivity at lower trophic levels. Asian carp predation on Walleye and Yellow Perch larvae caused biomass declines among all Walleye and Yellow Perch groups. Large food web impacts of AC occurred in only 2% of the simulations, where AC biomass exceeded 200 kg/ha, resulting in biomass declines of zooplankton and planktivorous fish near the levels observed in the Illinois River. Our findings suggest that AC would affect Lake Erie's food web by competing with other planktivorous fishes and by providing additional prey for piscivores. Our methods provide a novel approach for including uncertainty into forecasts of invasive species' impacts on aquatic food webs. Received December 6, 2014; accepted July 15, 201

    A multiphase seismic investigation of the shallow subduction zone, southern North Island, New Zealand

    Get PDF
    The shallow structure of the Hikurangi margin, in particular the interface between the Australian Plate and the subducting Pacific Plate, is investigated using the traveltimes of direct and converted seismic phases from local earthquakes. Mode conversions take place as upgoing energy from earthquakes in the subducted slab crosses the plate interface. These PS and SP converted arrivals are observed as intermediate phases between the direct P and S waves. They place an additional constraint on the depth of the interface and enable the topography of the subducted plate to be mapped across the region. 301 suitable earthquakes were recorded by the Leeds (Tararua) broad-band seismic array, a temporary line of three-component short-period stations, and the permanent stations of the New Zealand national network. This provided coverage across the land area of southern North Island, New Zealand, at a total of 17 stations. Rays are traced through a structure parametrized using layered B-splines and the traveltime residuals inverted, simultaneously, for hypocentre relocation, interface depth and seismic velocity. The results are consistent with sediment in the northeast of the study region and gentle topography on the subducting plate. This study and recent tectonic reconstructions of the southwest Pacific suggest that the subducting plate consists of captured, oceanic crust. The anomalous nature of this crust partly accounts for the unusual features of the Hikurangi margin, e.g. the shallow trench, in comparison with the subducting margin further north

    Development and Field Validation of an Environmental DNA (eDNA) Assay for Invasive Clams of the Genus Corbicula

    Get PDF
    Early detection is imperative for successful control or eradication of invasive species, but many organisms are difficult to detect at the low abundances characteristic of recently introduced populations. Environmental DNA (eDNA) has emerged as a promising invasive species surveillance tool for freshwaters, owing to its high sensitivity to detect aquatic species even when scarce. We report here a new eDNA assay for the globally invasive Asian clam Corbicula fluminea (MĂĽller, 1774), with field validation in large lakes of western North America. We identified a candidate primer pair for the Cytochrome c oxidase subunit 1 (COI) gene for C. fluminea. We tested it for specificity via qPCR assay against genomic DNA of the target species C. fluminea, and synthetic DNA gBlocks for other non-target species within and outside of the genus Corbicula. Our best identified primer amplifies a 208-bp fragment for C. fluminea and several closely related species within the genus, but was specific for these non-native Asian clams relative to native mollusks of western North America. We further evaluated this assay in application to eDNA water samples for the detection of C. fluminea from four lakes in California and Nevada, United States, where the species is known to occur (including Lake Tahoe) relative to seven lakes where it has never been observed. Our assay successfully detected C. fluminea in all four lakes with historic records for this species, and did not detect C. fluminea from the seven lakes without known populations. Further, the distribution of eDNA detections within Lake Tahoe generally matched the known, restricted distribution of C. fluminea in this large lake. We conclude from this successful field validation that our eDNA assay for C. fluminea will be useful for researchers and managers seeking to detect new introductions and potentially monitor population trends of this major freshwater invader and other closely related members of its genus

    Quantitative and Rapid DNA Detection by Laser Transmission Spectroscopy

    Get PDF
    Laser transmission spectroscopy (LTS) is a quantitative and rapid in vitro technique for measuring the size, shape, and number of nanoparticles in suspension. Here we report on the application of LTS as a novel detection method for species-specific DNA where the presence of one invasive species was differentiated from a closely related invasive sister species. The method employs carboxylated polystyrene nanoparticles functionalized with short DNA fragments that are complimentary to a specific target DNA sequence. In solution, the DNA strands containing targets bind to the tags resulting in a sizable increase in the nanoparticle diameter, which is rapidly and quantitatively measured using LTS. DNA strands that do not contain the target sequence do not bind and produce no size change of the carboxylated beads. The results show that LTS has the potential to become a quantitative and rapid DNA detection method suitable for many real-world applications
    • …
    corecore