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Abstract  32 

The genomic revolution has fundamentally changed how we survey biodiversity on earth. High-33 

throughput sequencing (‘HTS’) platforms now enable the rapid sequencing of DNA from diverse 34 

kinds of environmental samples (termed ‘environmental DNA’ or ‘eDNA’). Coupling HTS with 35 

our ability to associate sequences from eDNA with a taxonomic name is called ‘eDNA 36 

metabarcoding’ and offers a powerful molecular tool capable of non-invasively surveying 37 

species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for 38 

surveying animal and plant richness, and the challenges in using eDNA approaches to estimate 39 

relative abundance. We highlight eDNA applications in freshwater, marine, and terrestrial 40 

environments, and in this broad context, we distill what is known about the ability of different 41 

eDNA sample types to approximate richness in space and across time. We provide guiding 42 

questions for study design and discuss the eDNA metabarcoding workflow with a focus on 43 

primers and library preparation methods. We additionally discuss important criteria for 44 

consideration of bioinformatic filtering of data sets, with recommendations for increasing 45 

transparency. Finally, looking to the future, we discuss emerging applications of eDNA 46 

metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA 47 

metabarcoding can empower citizen science and biodiversity education.  48 
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Introduction 49 

Anthropogenic influences are causing unprecedented changes to the rate of biodiversity 50 

loss and, consequently, ecosystem function (Cardinale et al. 2012). Accordingly, we need rapid 51 

biodiversity survey tools for measuring fluctuations in species richness to inform conservation 52 

and management strategies (Kelly et al. 2014). Multi-species detection using DNA derived from 53 

environmental samples (termed ‘environmental DNA’ or ‘eDNA’) using high-throughput 54 

sequencing (‘HTS’) (Box 1), is a fast and efficient method to survey species richness in natural 55 

communities (Creer et al. 2016). Bacterial and fungal taxonomic richness (i.e., richness of 56 

microorganisms) is routinely surveyed using eDNA metabarcoding and is a powerful 57 

complement to conventional culture-based methods (e.g., Caporaso et al. 2011; Tedersoo et al. 58 

2014). Over the last decade, it has been recognized that animal and plant communities can be 59 

surveyed in a similar fashion (Taberlet et al. 2012b; Valentini et al. 2009).  60 

Many literature reviews summarize how environmental DNA (eDNA) can be used to 61 

detect biodiversity, but they focus on single species detections, richness estimates from 62 

community DNA (see Box 1 for definition for how this differs and can be confused with eDNA), 63 

or general aspects of using eDNA for detection of biodiversity in a specific field of study (Table 64 

S1). To compliment these many recent reviews, here we concentrate on four aspects: a summary 65 

of eDNA metabarcoding studies on animals and plants to date, knowns and unknowns 66 

surrounding the spatial and temporal scale of eDNA information, guidelines and challenges for 67 

eDNA study design (with a specific focus on primers and library preparation), and emerging 68 

applications of eDNA metabarcoding in the basic and applied sciences.  69 

 70 

Surveying species richness and relative abundance with eDNA metabarcoding  71 
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Conventional physical, acoustic, and visual-based methods for surveying species richness 72 

and relative abundance have been the major ways we observe biodiversity, yet they are not 73 

without limitations. For instance, despite highly specialized identification by experts, in some 74 

taxonomic groups identification errors are common (Bortolus 2008; Stribling et al. 2008). 75 

Conventional physical methods can also cause destructive impacts on the environment and to 76 

biological communities (Wheeler et al. 2004), making them difficult to apply in a conservation 77 

context. Furthermore, when a species’ behavior or size makes it difficult to survey them (e.g. 78 

small bodied or elusive species), conventional methods can require specialized equipment or 79 

species-specific observation times, thus making species richness and relative abundance 80 

estimates for entire communities intractable (e.g., many amphibians and reptiles, Erb et al. 2015; 81 

Price et al. 2012). These reasons highlight the continued need to develop improved ways to 82 

survey global biodiversity, and the unique ways eDNA metabarcoding can complement 83 

conventional methods. 84 

Species richness: eDNA metabarcoding compared with conventional methods 85 

Environmental DNA metabarcoding can complement (and overcome the limitations of) 86 

conventional methods by targeting different species, sampling greater diversity, and increasing 87 

the resolution of taxonomic identifications (Table 1). For example, Valentini et al. (2016) 88 

demonstrated that, for many different aquatic systems, the number of amphibian species detected 89 

using eDNA metabarcoding was equal to or greater than the number detected using conventional 90 

methods. When terrestrial hematophagous leeches were used as collectors of eDNA (blood of 91 

hosts), endangered and elusive vertebrate species were detected using eDNA metabarcoding and 92 

served as a valuable complement to camera trap surveys in a remote geographic region (Schnell 93 

et al. 2015b). In plants, Kraaijeveld et al. (2015) demonstrated that eDNA metabarcoding of 94 
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filtered air samples allowed pollen to be identified with greater taxonomic resolution relative to 95 

visual methods. 96 

The ways that eDNA can complement and extend conventional surveys are promising, 97 

but the spatial and temporal scale of inference is likely to differ between conventional and 98 

molecular methods. For example, in a river Deiner et al. (2016) showed on a site by site basis 99 

that the eDNA metabarcoding method resulted in higher species detection compared to a 100 

conventional physical-capture  method (i.e., kicknet sampling) (Table 1).  However, eDNA in 101 

this case may have detected greater species richness at a site not because the species themselves 102 

are present, but rather because their DNA has been transported from another location upstream, 103 

creating an inference challenge in space and time for eDNA species detections.  Therefore, 104 

research is needed to understand the complex spatiotemporal dynamics of the various eDNA 105 

sample types (Fig 1), which at present we know very little about. In addition, all sampling 106 

methods have inherent biases caused by their detection probabilities.  Detection probabilities 107 

often vary by species, habitat, and detection method (e.g., the mesh size of a net or a primer’s 108 

match to a target DNA sequence) and use of bias-corrected species richness estimators will be 109 

important to account for these biases when conducting statistical comparisons between the 110 

outcomes in measured richness (Gotelli & Colwell 2011; Olds et al. 2016). 111 

Future methodological comparisons could also benefit from a quantitative ecological 112 

approach in the design of sampling by matching sample effort and scope of sampling between 113 

eDNA and conventional methods. Multimethod species distribution modeling or site occupancy 114 

modeling is one example for how this can be achieved and has been demonstrated in cases 115 

comparing qPCR for a single species and conventional methods (Hunter et al. 2015; Rees et al. 116 

2014a; Schmelzle & Kinziger 2016; Schmidt et al. 2013), but rarely for eDNA metabarcoding 117 
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(Ficetola et al. 2015). Thus, we expect the robustness of eDNA metabarcoding to reveal species 118 

richness estimates for animals and plants will be improved by coupling distribution or occupancy 119 

modeling with studies to determine the scale of inference in space and time for an eDNA sample 120 

(Fig. 1). 121 

Species relative abundance: eDNA metabarcoding compared with conventional methods  122 

Estimating a species’ relative abundance using eDNA metabarcoding is an intriguing 123 

possibility. Here we focus on the evidence from animals in aquatic systems. Controlled studies 124 

based on detection of a single animal species in small ecosystems, such as in aquaria and 125 

mesocosms (e.g., Minamoto et al. 2012; Moyer et al. 2014; Pilliod et al. 2013; Thomsen et al. 126 

2012a),  in natural freshwater systems  (e.g., Doi et al. 2017; Lacoursière‐Roussel  et al. 2016a) 127 

and marine environments (Jo et al. 2017; Yamamoto et al. 2016) demonstrate that eDNA can be 128 

used to measure relative population abundance with a species specific primer set and qPCR. 129 

While many more controlled experiments are needed in all ecosystems to determine the 130 

relationship of abundance to copy number observed in qPCR, evidence thus far from water 131 

samples signifies that eDNA contains information about a species’ relative abundance. 132 

Overall, ascertaining abundance information using metabarcoding of eDNA for whole 133 

communities still lacks substantial evidence, but some studies in aquatic environments have 134 

shown positive relationships with between the relative number of reads and relative or rank 135 

abundance estimated with conventional methods. Evans et al. (2016) showed in a mesocosm 136 

setting that relative abundance of individuals and biomass was correlated with relative read 137 

abundance in mesocosms containing fishes and an amphibian. In a natural lake, Hänfling et al. 138 

(2016) found that the rank abundance derived from long-term monitoring was correlated with 139 

read abundance for fish species, and positively correlated with gillnet surveys conducted at the 140 
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same time as eDNA sampling. In deep sea habitats, Thomsen et al. (2016) found that when reads 141 

for fish were pooled to the taxonomic rank of families, there was a correlation with relative 142 

abundance of individuals and biomass captured in trawls. While these examples are promising, 143 

not all studies support such findings (e.g., Lim et al. 2016).  144 

Challenges to accurate abundance estimation through eDNA metabarcoding stem from 145 

multiple factors in the field and the lab (Kelly 2016). In the field, the copy number of DNA 146 

arising from an individual in an environmental sample is influenced by the characteristics of the 147 

‘ecology of eDNA’ (e.g., its origin, state, fate, and transport) (Barnes & Turner 2016). Because 148 

different animal and plant species are likely to have different rates of eDNA production or 149 

‘origin’ (Klymus et al. 2015), exhibit different ‘transport’ rates from other locations (Civade et 150 

al. 2016; Deiner & Altermatt 2014), or stability or ‘fate’ of eDNA in time (Bista et al. 2017; 151 

Yoccoz et al. 2012), eDNA in an environmental sample could be inconsistent relative to a 152 

species’ true local and current abundance. Therefore, continued research on how the origin, state, 153 

fate, and transport of eDNA influences estimates of relative abundance is needed before we can 154 

understand the error this may generate in our ability to estimate abundance. 155 

In the lab, primer bias driven by mismatches with their target have been shown to skew 156 

the relative abundance of amplified DNA from mock communities (Elbrecht & Leese 2015; 157 

Piñol et al. 2015). Similarly, the same mechanism could alter the relative abundance of a species’ 158 

DNA amplified from eDNA (Fig. 2). Primer bias results in an increased variance in abundance 159 

of reads observed relative to their true abundance in an environmental sample (Fig.2). Another 160 

source of error is related to library preparation methods.  Analysis of mock communities has 161 

shown that amount of subsampling during processing steps can drive the loss of rare reads 162 

(Leray & Knowlton 2017) and likely occurs for eDNA samples as well (Shelton et al. 2016). The 163 
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combination of primer bias and library preparation procedures alone could cause a large variance 164 

in reads observed for any given species and could prevent rare species detection altogether (Fig 165 

2). Technical approaches and potential solutions to alleviate primer bias and alternative library 166 

preparation methods are discussed in the “Challenges in the field, in the laboratory, and at the 167 

keyboard” section. While in the end, it may be that eDNA metabarcoding is not the most 168 

accurate method for simultaneously measuring the relative abundance for multiple species from 169 

eDNA, researchers should consider whether the eDNA metabarcoding method is accurate 170 

enough for application in a particular study or an applied setting.  Other methods such as capture 171 

enrichment are being examined and are promising because they avoid PCR and hence the bias 172 

this may cause, but they do require extensive knowledge of the biodiversity  to design targeted 173 

gene capture probes and they come with a greater costs for analysis (Dowle et al. 2016).  Future 174 

studies comparing qPCR, eDNA metabarcoding, and capture enrichment will be beneficial to 175 

determine which method yields accurate estimates of relative abundance from eDNA.  176 

Before ruling out the plausibility entirely, in the short term, simulations could certainly 177 

be used to test the effects of technical laboratory issues and account for the ecology of eDNA to 178 

decipher under what conditions reliable estimates for abundance can be achieved from eDNA 179 

metabarcoding. Promising steps in this direction have been investigated through simulation to 180 

learn the nature of how datasets deliberately “noised” conform to neutral theory parameters in 181 

estimation of rank abundance curves (Sommeria-Klein et al. 2016).  Results from simulations 182 

studies such as this could then be used to inform mock community experiments and test 183 

hypotheses (e.g., type of error distribution expected) under realistic semi-natural environments. 184 

 185 

Ecosystems, their sample types and known scales of inference in space and time  186 
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Freshwater ecosystems 187 

Environmental DNA metabarcoding of different sample types has been highly successful 188 

in obtaining species richness estimates for animals in aquatic systems (Fig.1, Table 1).  In one of 189 

the first seminal studies, Thomsen and colleagues (2012a) used surface water from lakes, ponds, 190 

and streams in Denmark to demonstrate that eDNA contained information about aquatic 191 

vertebrate and invertebrate species known from the region. However, there are a notable lack of 192 

eDNA metabarcoding studies assessing living aquatic plant communities, and this remains an 193 

open area for further research. 194 

Mounting evidence suggests that the spatial and temporal scale of inference for eDNA 195 

sampled from surface water differs for rivers and lakes (Fig. 1). Specifically, river waters 196 

measure species richness present at a larger spatial scale (Deiner et al. 2016) compared to eDNA 197 

in lake surface waters (Hänfling et al. 2016).  Differences between lake and river eDNA signals 198 

may be due to the transport of eDNA over larger distances in rivers compared to longer retention 199 

times of water in lake systems (Turner et al. 2015). However, lakes and ponds with river and 200 

surface runoff inputs, combined with lake mixing or stratification, may serve as eDNA sources 201 

for catchment level terrestrial and aquatic diversity estimates similar to rivers (Deiner et al. 202 

2016). No studies to date have estimated the sources of eDNA in surface water from a lake’s 203 

catchment and related it to the diversity locally occurring in the lake. However, ancient DNA 204 

from sediment cores in lakes (sedaDNA) has been used to determine historical plant (e.g., Pansu 205 

et al. 2015b; Parducci et al. 2013) and livestock communities (Giguet-Covex et al. 2014), thus 206 

indicating that lakes do receive DNA from species in their catchments which can be incorporated 207 

into their sediments. For a more extensive review of sedaDNA being used to reconstruct past 208 

ecosystems see Pederson et al. (2015) and Brown and Blois (2016).  209 
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Most often, species richness estimates generated from eDNA in surface waters of lakes 210 

and rivers reflects recent site biodiversity, while those from eDNA found in surface sediments 211 

may reflect a temporally extended accumulation of eDNA.  For example, Shaw et al. (2016) 212 

compared estimates of fish species richness from water and surface sediment samples.  Generally 213 

they found species were detected in both samples, but estimates of species richness from water 214 

samples were in better agreement with the species physically present at the time of sampling.  215 

The temporal scale of inference in surface sediments is largely unknown and needs further 216 

examination (Fig. 1).  217 

In addition to surface freshwater (~1%), groundwater (~30%) and ice (~69%) comprise 218 

much of Earth’s freshwater (Gleick 1993). While the other freshwater habitats far surpass the 219 

amount of surface water, their extant biodiversity is rather poorly described (Danielopol et al. 220 

2000). Groundwater is known to harbor a wide range of specialist taxa which are difficult to 221 

assess using conventional survey methods due to the inaccessibility of these habitats (Danielopol 222 

et al. 2000). Groundwater micro-organism metabarcoding studies have shown high fungal 223 

(Sohlberg et al. 2015) and bacterial (Kao et al. 2016) diversity, and there are examples of 224 

species-specific studies on the cave-dwelling amphibian Proteus anguinus (e.g., Gorički et al. 225 

2017; Vörös et al. 2017). However, there is a clear lack of eDNA metabarcoding studies that 226 

could shed light on the diversity of a wide range of macro-organisms known to inhabit 227 

groundwater; including turbellarians, gastropods, isopods, amphipods, decapods, fishes and 228 

salamanders. The spatiotemporal scale of inference of eDNA samples from groundwater is 229 

currently unknown.  Surveying eDNA in systems with knowledge of the complex hydrology and 230 

interactions between surface and ground water will be interesting places to start to reveal the 231 

scale of inference for eDNA surveys for these environments. 232 
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Environmental DNA found in sediment cores and ice core sediments generally reflects a 233 

historical biodiversity sample (Fig. 1) and is more commonly used as a source of ancient DNA 234 

(Willerslev et al. 2007).  To date animal and plants surveyed from lake sediment cores suggest 235 

that information about terrestrial and aquatic communities can be estimated as far back as 6 to 236 

12.6 thousand years before present (Giguet-Covex et al. 2014; Pedersen et al. 2016), whereas 237 

eDNA from sediments in ice cores have successfully been used to reconstruct communities as far 238 

back as 2000 years before present (Willerslev et al. 1999).  The spatial scale of inference for 239 

sediment samples types has not been tested, but when samples from multiple locations are 240 

combined, large areas can be surveyed for the past presence of species (Anderson-Carpenter et 241 

al. 2011). For modern communities, snow has served as a viable sample type and enabled a local 242 

survey of wild canids in France (Valiere & Taberlet 2000). Environmental DNA metabarcoding 243 

of water from glacial runoff will also likely be a valuable tool to survey animal and plant 244 

richness living in glacial and subglacial habitats, which are undergoing dramatic change because 245 

of climate warming (Giersch et al. 2017). 246 

Marine ecosystems 247 

The use of eDNA metabarcoding is often described as challenging in marine ecosystems, 248 

due to the potential dilution of eDNA in large volumes of water and additional abiotic factors 249 

(salinity, tides, currents) that likely impact eDNA transport and degradation (Foote et al. 2012; 250 

Port et al. 2016; Thomsen et al. 2012b), not to mention the logistics involved in undertaking 251 

such surveys. Nonetheless, eDNA metabarcoding surveys of marine fish from coastal water 252 

samples have demonstrated that eDNA can detect a greater taxonomic diversity compared to 253 

conventional survey techniques (Table 1), while simultaneously improving detection of rare and 254 

vagrant fish species, and revealing cryptic species otherwise overlooked by visual assessments 255 
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(O’Donnell et al. 2017; Port et al. 2016; Thomsen et al. 2012b; Thomsen et al. 2016). Marine 256 

mammals have been surveyed with acoustic surveys and eDNA metabarcoding, and here the 257 

conventional acoustic methods detected a greater species richness (Foote et al. 2012). 258 

Nevertheless, this study used low sample volumes compared to other marine studies (15 – 45 mL 259 

vs. 1.5 – 3.0 L) and the authors concluded that larger sample volumes would likely lead to 260 

greater similarity between eDNA and conventional methods. In Monterey Bay, California, water 261 

sampled from depths less than 200 m or greater 200 m were used to detect marine mammals such 262 

as seals, dolphins, and whales in addition to many fishes and sharks (Andruszkiewicz et al. 263 

2017). The taxonomic groups detected were spatially explicit and were found more or less in 264 

water associated with their expected habitat. 265 

Longitudinal transport of animal and plant eDNA in marine environments is not well 266 

studied. But, similar to freshwater sediment cores from lakes, vertical transport into marine 267 

sediments is likely to preserve a large proportion of eDNA from particulate organic matter or 268 

eDNA that has become directly adsorbed onto sediment particles. This absorption shields 269 

nucleotides from degradation (particularly oxidation and hydrolysis) and facilitates long-term 270 

preservation of genetic signals over potentially large spatiotemporal scales (Fig. 1). Marine 271 

sediment eDNA concentrations have been shown to be three orders of magnitude higher than in 272 

seawater eDNA (Torti et al. 2015) and eDNA from both ancient and extant communities is 273 

typically recovered (Lejzerowicz et al. 2013). Similar to lake sediments, marine sediments can 274 

accumulate genetic information from both terrestrial and pelagic sources (Torti et al. 2015).  275 

Marine sediments are difficult to sample because of the logistical effort involved in 276 

obtaining samples, which often requires ship time and specialized coring equipment. Even 277 

though much work remains to be done to understand the spatiotemporal scale of inference for 278 
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marine sediment cores, comparisons between eDNA and environmental RNA (eRNA) 279 

metabarcoding are hypothesized to allow inference between present and past diversity. 280 

Environmental RNA is thought to be only available from live organisms in the community, thus 281 

the comparison between eDNA and eRNA has been investigated. In applied settings, eDNA 282 

metabarcoding of surface sediments has revealed benthic impacts of aquaculture for Atlantic 283 

salmon farming on short spatial scales using both eDNA and eRNA (Pawlowski et al. 2014). 284 

Guardiola et al. (2016) showed through a comparison of eDNA and eRNA that spatial trends in 285 

species richness from these two sources were similar, but that eDNA detected higher diversity. 286 

Overall, the fate, transport, and decomposition of animal and plant eDNA in marine 287 

environments is poorly known compared to other environments, and there is pressing need for 288 

further studies.  289 

Terrestrial and aerial ecosystems 290 

Environmental DNA from terrestrial sediment cores is a valuable tool for investigating 291 

past environments and reconstructing animal and plant communities (Fig. 1, Haouchar et al. 292 

2014; Jørgensen et al. 2012; Willerslev et al. 2003). Animal remains also provide opportunities 293 

to reconstruct past trophic relationships. For example, eDNA metabarcoding of pellets in 294 

herbivore middens have been used to identify species in ancient animal and plant communities 295 

(Fig. 2, Murray et al. 2012) and DNA traces from microplant fossils within coprolites were used 296 

to reconstruct former feeding relationships in rare and extinct birds (Wood et al. 2012). Again 297 

here, the recent reviews of Brown & Blois (2016) and Pedersen et al. (Pedersen et al. 2015) 298 

provide a more extensive overview for how ancient DNA is used to uncover past animal and 299 

plant communities. 300 
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In modern environments, eDNA isolated from top soils has been used to characterize 301 

biodiversity in earthworms (Bienert et al. 2012; Pansu et al. 2015a), invertebrates (McGee & 302 

Eaton 2015), plants (Taberlet et al. 2012c; Yoccoz et al. 2012) and vertebrate species (Andersen 303 

et al. 2012). In what is perhaps the most comprehensive analysis using eDNA metabarcoding for 304 

any environment, Drummond et al. (2015) simultaneously surveyed all three domains of life in 305 

top soil using PCR primers that amplified five different metabarcoding regions, thus 306 

demonstrating the power of this method for assessing total richness for an area. However, the 307 

spatial scale of inference for many terrestrial eDNA samples is an open question (Fig. 1).  308 

Research on the time scale of inference for DNA in top soil suggests that long fragments of DNA 309 

break down quickly, but short fragments remain detectable for days to years after the presence of 310 

the species (Taberlet et al. 2012c; Yoccoz et al. 2012). Thus, the fragment length amplified can 311 

change the temporal resolution of a soil sample. 312 

There are many additional sources for eDNA sampling besides soil in terrestrial 313 

ecosystems. For animals, blood meals from leeches (Schnell et al. 2012) and carrion flies 314 

(Calvignac‐Spencer et al. 2013) have been used to survey mammal diversity. Saliva on browsed 315 

twigs was tested as a source of eDNA to survey ungulates (Nichols et al. 2012) and on predated 316 

eggs and carcasses of ground-nesting birds to discover predators or scavengers (Hopken et al. 317 

2016). DNA extracted from spider webs has also been used to detect spiders and their prey (Xu 318 

et al. 2015). For plants, pollen within honey has revealed honey bee foraging preferences (De 319 

Vere et al. 2017; Hawkins et al. 2015). Craine et al. (2017) surveyed dust from indoor and 320 

outdoor environments throughout the United States and found that plant DNA from known 321 

allergens was almost twice as high outdoor compared with indoor environments. In addition to 322 

allergen detection from pollen, there remain many potential applications of dust eDNA to assess 323 
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animal species richness.  Fecal DNA has also been used as a source of eDNA to assess diet 324 

composition, but most studies utilizing this source of eDNA are focused on single species 325 

detections and population genetic inferences (see review from Rodgers & Janečka 2013) and are 326 

not necessarily using eDNA sources from fecal DNA to estimate species richness of terrestrial 327 

communities. Boyer et al. (2015) proposed that surveys of feces from generalist predators can act 328 

as ‘biodiversity capsules’ and analysis of this eDNA source should give rise to biodiversity 329 

surveys for prey communities in landscapes. While all of these sources are available, most of 330 

these sample types (e.g., leaves from a tree, fecal pellets, spider webs, and dust) do not have a 331 

known scale of inference in space and time. A single sample of eDNA from these sources is not 332 

likely to confirm species richness for more than a local scale, but combination of multiple sample 333 

sources (e.g., leaves, fecal pellets, and spider webs throughout a park) and sampled over time 334 

may allow for spatial and temporal estimates of terrestrial species richness.  335 

Surveys of airborne eDNA have placed greater emphasis on the detection of bioaerosols 336 

that cause infection or allergic responses in animals and plants (West et al. 2008). For example, 337 

Kraaijeveld (2015) investigated airborne pollen that can cause hay fever and asthma in humans 338 

and showed that the source of allergenic plant pollen could be identified more accurately using 339 

eDNA from plant pollen filtered from the air compared to microscopic identification. A 340 

particularly interesting area for further research is to gain an understanding of the scale of 341 

inference for air samples in space and time (Fig. 1). While plant eDNA can be ascertained, 342 

surveying other species such as birds and insects from aerial eDNA sources has not been tested 343 

to our knowledge. 344 

 345 

Challenges in the field, in the laboratory, and at the keyboard 346 
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Despite the obvious power of the approach, eDNA metabarcoding is affected by a host of 347 

precision and accuracy challenges distributed throughout the workflow in the field, in the 348 

laboratory, and at the keyboard (Thomsen & Willerslev 2015). Following study design (e.g., 349 

hypothesis/question, targeted taxonomic group, etc. Fig. 3), the current eDNA workflow consists 350 

of three components: field, laboratory, and bioinformatics. The field component consists of 351 

sample collection (e.g., water, sediment, air) that is preserved or frozen prior to DNA extraction. 352 

The laboratory component has four basic steps: 1) DNA is concentrated (if not done in the field) 353 

and purified, 2) PCR is used to amplify a target gene or region, 3) unique nucleotide sequences 354 

called ‘indexes’ (also referred to as ‘barcodes’) are incorporated using PCR or are ligated onto 355 

different PCR products, creating a ‘library’ whereby multiple samples can be pooled together, 4) 356 

pooled libraries are then sequenced on a high-throughput machine (most often the Illumina 357 

HiSeq or MiSeq platform). The final step after laboratory processing of samples is to 358 

computationally process the output files from the sequencer using a robust bioinformatics 359 

pipeline (Fig. 3, Box 2).  Below we emphasize the important and rapidly evolving aspects of the 360 

eDNA metabarcoding workflow and give recommendations for ways to reduce error. 361 

In the field 362 

As for any field study, the study design is of paramount importance (Fig. 3, Box 2), since 363 

it will impact the downstream statistical power and analytical interpretation of any eDNA 364 

metabarcoding dataset. For example, sampling effort and replication (especially biological), are 365 

positively correlated with the probability of detecting the target taxa (Furlan et al. 2016; 366 

Willoughby et al. 2016). Despite the extensive evidence of the occurrence of macro-organism 367 

DNA in the environment, our fundamental understanding of what ‘eDNA’ is from any 368 

environmental sample is still lacking. For an illustration of this challenge, we summarize what is 369 
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known about eDNA in freshwater environments. The current state-of-the-art relies on the fact 370 

that we can access eDNA by precipitating DNA from small volumes of water samples (e.g., 15 371 

mL, Ficetola et al. 2008), or filter eDNA from the water column using a variety of filter sizes 372 

(0.22 µm and upwards) (Rees et al. 2014b). Filtration protocols lead to a working hypothesis that 373 

aqueous eDNA is either derived from cellular or organellar sources (e.g., mitochondria, 374 

Lacoursière‐Roussel  et al. 2016b; Turner et al. 2014; Wilcox et al. 2015), and precipitation 375 

protocols suggest extracellular sources (Torti et al. 2015). It is clear that at least some freshwater 376 

eDNA comes from intact cellular or organellar sources because it has recently been 377 

demonstrated to be available in the genomic state (Deiner et al. 2017b).  Thus, eDNA in water 378 

exists in both un-degraded and degraded forms (Deiner et al. 2017b).  However, continued 379 

research on the origin, state, and fate of eDNA will greatly inform numerous strategies regarding 380 

its acquisition (filtering, replication, sample volumes and spatial sampling strategies) (Barnes & 381 

Turner 2016). Many methods for solving current challenges of false negatives (e.g., use of 382 

biological replicate sampling, improved laboratory methods) and false positives (e.g., use of 383 

negative controls) in the field are explored in a recent review (Goldberg et al. 2016), we 384 

therefore refer readers to this review rather than treat those topics in-depth here. 385 

 386 

In the laboratory 387 

There are a number of recent studies that focus on the capture, preservation, and 388 

extraction of eDNA and the literature reviewed therein summarizes the important considerations 389 

and trade-offs that should be tested before a large scale study is conducted (e.g., Deiner et al. 390 

2015; Renshaw et al. 2015; Spens et al. 2017). Rather than reiterate those aspects here, we focus 391 

on primer choice and library preparation. For animal and plant studies, PCR primers most often 392 
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target mitochondrial or plastid loci or nuclear ribosomal RNA genes (Table S2). The standard 393 

barcoding markers defined by the Consortium for the Barcode of Life (CBOL) are Cytochrome c 394 

oxidase subunit I (COI or cox1), for taxonomical identification of animals (Hebert et al. 2003), 395 

and a 2-loci combination of rbcL and matK as the plant barcode (Hollingsworth et al. 2009) with 396 

ITS2 also suggested as valid plant barcode marker (Chen et al. 2010).  However, there are 397 

limitations for using the standard barcoding markers in macro-organism eDNA metabarcoding. 398 

Specific to COI, other DNA regions are commonly used because not all taxonomic groups can be 399 

differentiated to species equally well (Deagle et al. 2014) and because it is challenging to design 400 

primers in this gene for a length that is suitable for short amplicon analysis, but some regions 401 

have been identified (Leray et al. 2013).  The most common alternative markers used are 402 

mitochondrial ribosomal genes such as 12S and 16S or protein coding genes such as Cytochrome 403 

B (Table S2). Specific to the plant barcoding loci, the 2-loci primarily used for barcoding plants 404 

can be independently generated, but is not always possible to recover which fragment from each 405 

gene is associated with each other in an eDNA sample; rendering species identification using the 406 

standard plant barcode challenging.  Bioinformatic methods can help resolve these situations to 407 

some extent, and may work when diversity is low in a sample (Bell et al. 2016). Therefore, often 408 

one or different markers are used (e.g., P6 loop of the trnL intron (Sønstebø et al. 2010; Taberlet 409 

et al. 2007)) (Table S2). 410 

Additionally, some highly-evolving non-coding loci, such as ITS rRNA, are used (Table 411 

S2), but these markers do not always allow for the construction of alignments to determine 412 

MOTUs during data analysis because they have intragenomic variation that complicates their use 413 

in biodiversity studies (plant ITS rRNA may be an exception (Bell et al. 2016)). For these loci, 414 

an unknown environmental sequence is often discarded unless it has an exact database match 415 
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reducing a dataset to only known and sequenced biodiversity. Due to these factors, other 416 

metabarcoding loci such as 18S rRNA genes may be more appropriate (e.g., in studies of marine 417 

invertebrates, Bik et al. 2012), especially if phylogenetic analysis is needed to narrow down 418 

taxonomic assignments and circumvent database limitations (Box 3).  419 

Once the locus or loci are chosen, primers are then designed based on the taxonomic 420 

group(s) of interest within a study, and the need for broad (multiple phyla) vs. narrow (single 421 

order) coverage to test study-specific hypotheses (Fig. 3). When choosing previously designed 422 

primers (Table S2) or when designing new primers it is important to perform rigorous testing, in 423 

silico, in vitro and in situ to infer their utility for metabarcoding eDNA in a new study system 424 

(Elbrecht & Leese 2017; Freeland 2016; Goldberg et al. 2016). Amplicon size is also an 425 

important consideration because there may be a trade-off in detection with amplicon length (e.g., 426 

short fragments are more likely to amplify). However, short fragments may persist longer in the 427 

environment and increase the inference in space or time that can be made from an environmental 428 

sample (Bista et al. 2017; Deagle et al. 2006; Jo et al. 2017; Yoccoz et al. 2012). Additionally, 429 

use of more than one locus for a target group can allow for tests of consistency between loci and 430 

increase stringency of detection for any species (Evans et al. 2017). 431 

Once primers are designed and PCR products are amplified, eDNA metabarcoding relies 432 

on multiplexing large numbers of samples on HTS platforms in order to make the tool cost 433 

effective. Illumina (MiSeq and HiSeq) sequencing platforms at the moment outperform other 434 

models for accuracy (Loman et al. 2012) and multiplexing samples is usually achieved by the 435 

incorporation of sample-specific nucleotide indices and sequencing adapters during PCR 436 

amplification. However, multiplexing creates opportunities for errors and biases. In this facet of 437 

the workflow it is important to avoid methods that induce sample specific biases in amplification 438 
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(O’Donnell et al. 2016) and to reduce the potential for index crossover, or “tag jumping” (see 439 

Box 2) (Schnell et al. 2015a). To address these issues, Illumina has developed a two-step PCR 440 

protocol using uniformly tailed primers across samples for the first step and sample specific 441 

indexes for the second PCR, which could reduce bias related to index sequence variations (Berry 442 

et al. 2011; Miya et al. 2015; O’Donnell et al. 2016). Regardless of the strategy employed 443 

extreme care is needed to ensure primer quality control (e.g., both use of small aliquots from 444 

stocks as well as proper cleaning of PCR amplified products to remove indexing primers after 445 

amplification (Schnell et al. 2015a).  When a species detection is suspected as highly unlikely in 446 

a sample, single-species quantitative PCR (qPCR) can be used to verify its presence from the 447 

same eDNA sample because qPCR does not suffer from the same technical sources of error. 448 

Additional suggestions for dealing with multiplexing artifacts are suggested in Box 2 under 449 

“abundance filtering”. 450 

In addition, both positive and negative controls must be used in the lab to ensure sample 451 

integrity (Fig. 3). Use of positive control samples (either from pooled DNA extracts derived from 452 

tissue at the PCR stage, or used at the extraction stage alongside that of eDNA samples) can help 453 

evaluate sequencing efficiency and multiplexing errors in the eDNA metabarcoding workflow 454 

(Hänfling et al. 2016; Olds et al. 2016; Port et al. 2016). Careful thought in the construction of 455 

the mock community is needed. Typically, species not expected in the study area are used (Olds 456 

et al. 2016; Thomsen et al. 2016) such that if there is contamination during the workflow their 457 

reads can be identified, removed and serve as a control for detecting contamination when it 458 

occurs.  459 

Negative controls should be introduced at each stage of lab work (i.e., filtration - if done 460 

in the lab, extraction, PCR, and indexing). We recommend that an equivalent amount of 461 
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technical replication should be used on negative and positive controls as that carried out on 462 

actual samples (Ficetola et al. 2015). Furthermore, it is becoming important that negative 463 

controls are sequenced regardless of having detectable amounts of DNA because contamination 464 

can be below detection limits of quantification and sequences found in these controls can be used 465 

to detect de-multiplexing errors or used in statistical modeling to rule out false positive 466 

detections (Olds et al. 2016). 467 

Finally, an important but often neglected consideration for the eDNA metabarcoding 468 

workflow, is the identification of technical artifacts that arise independently of true biological 469 

variation. For example, recently in a study focused on bacterial biodiversity using the 16S locus 470 

it was shown that a run effect can be confounded with a sample effect if it is not accounted for 471 

(e.g., by splitting sample groups across multiple Illumina runs, Chase et al. 2016); however, it 472 

remains to be seen whether such technical artifacts are also prevalent for loci used for 473 

metabarcoding plant and animals from eDNA (COI, 18S, ITS, etc.) and more research is needed.  474 

Until then, careful thought into how samples are pooled and run on a sequencer seems warranted 475 

in order to not confound the hypotheses being tested. 476 

At the keyboard 477 

Bioinformatic processing of high throughput sequence datasets requires the use of UNIX 478 

pipelines (or graphical wrappers of such tools, Bik et al. 2012). Metabarcoding of animal and 479 

plant community DNA is comprehensively outlined in Coissac et al. (2012). Below and in Box 3 480 

we highlight the common practices to community DNA metabarcoding and deviations for studies 481 

focusing on macro-organism eDNA metabarcoding.  482 

Bioinformatic pipelines and parameters must be carefully considered (Box 2) and it is 483 

important to work with a knowledgeable computational researcher to understand how processing 484 
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can impact the biological results and conclusions. Before computationally processing an eDNA 485 

metabarcoding dataset, perhaps the strongest message from Coissac et al. (2012) is to identify 486 

the differences between the analysis of data derived from microbial and macro-organismal 487 

groups. Since microbial ecologists have been inspired to use sequence-based identification of 488 

taxa over the past 40 years (Creer et al. 2016), the range of software solutions to analyze 489 

microbial metabarcoding datasets is unsurprisingly extensive (Bik et al. 2012). Perhaps more 490 

importantly, a number of established and maintained databases exist featuring many of the 491 

commonly used microbial taxonomic markers for prokaryotes (Cole et al. 2009), microbial 492 

eukaryotes (Guillou et al. 2013; Pruesse et al. 2007; Quast et al. 2012) and fungi (Abarenkov et 493 

al. 2010), meaning that microbial datasets can be analyzed and taxonomic affiliations established 494 

are established in a straight forward way.  495 

For macro-organism communities, pre-processing and initial quality control of eDNA 496 

metabarcoded data sets is not different from that of microbial datasets and can be acquired using 497 

packages developed either for microbial (Caporaso et al. 2010), or macro-organism data (Boyer 498 

et al. 2016), but taxonomic assignment will require a robust dataset of locus-specific reference 499 

sequences and the associated taxonomic data from a reference database (Coissac et al. 2012) 500 

(Box 3). Currently the two most common reference sources for macro-organisms are NCBI’s 501 

nucleotide database (Benson et al. 2013) and the Barcode of Life Database (Ratnasingham & 502 

Hebert 2007). The utility and taxonomic breadth of these databases can be enhanced by the 503 

creation of custom-made or hybrid databases, with the obvious additional workload and cost 504 

depending on the number of focal taxa missing from current data sources. Recently, Machida et 505 

al. (2017) have assembled and proposed metazoan mitochondrial gene sequence datasets that can 506 

be used for taxonomic assignment for environmental samples. While these datasets do not 507 
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account for future growth, their methods could be repeated at the time of any new study to 508 

generate a custom reference dataset for taxonomic assignment. 509 

Macro-organism eDNA metabarcoding datasets are associated with advantages compared 510 

to microbial datasets because the number of taxa in any survey will be comparatively low, 511 

reducing the computational time needed for taxonomic annotation. Moreover, the species 512 

delimitation concepts and taxonomic markers associated with macro-organisms are well-513 

developed (de Queiroz 2005) and can even be used to analyze population genetic structure 514 

(Sigsgaard et al. 2016; Thomsen & Willerslev 2015), or delimit species boundaries (Coissac et 515 

al. 2012; Hebert et al. 2003; Tang et al. 2014). Reliance on the vast knowledge we have for 516 

animal and plant taxonomy and biogeography is a distinct advantage for eDNA metabarcoding 517 

because of the independent test that it provides to calibrate and test the tool for its precision and 518 

accuracy (Deiner et al. 2016). 519 

Data archiving for transparency 520 

As eDNA applications continue to develop, all procedures used in the field, lab, and 521 

during bioinformatic data processing require a strong commitment to transparency on the part of 522 

researchers (Nekrutenko & Taylor 2012). Here, we outline best practices for eDNA 523 

metabarcoding studies of macro-organisms, following on from well-established standards in the 524 

fields of microbiology and genomics (Yilmaz et al. 2011).  First, raw FASTQ files from any 525 

HTS run need to be submitted to the Sequence Read Archive (SRA) of NCBI or the European 526 

Nucleotide Archive (ENA) and other such public national data bases before publication. 527 

Archiving raw data in publicly available databases is common practice in virtually all genomics 528 

and transcriptomic studies because it allows studies to be re-analyzed with new computational 529 

tools and standards. In fact, archiving raw data is becoming increasingly mandatory at many 530 
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evolutionary and ecology biology journals, inclusive of Molecular Ecology. Second, researchers 531 

should adhere to minimum reporting standards defined by the broader genomics community, 532 

such as the MIMARKS (Minimum information about a marker gene sequence) and MIxS 533 

(minimum information about any “x” sequence) specifications (Yilmaz et al. 2011). Goldberg et 534 

al. (2016) have made specific recommendations for upholding these reporting standards specific 535 

to eDNA studies (see Table 1 in Goldberg et al. 2016). 536 

Third, computational processing of data needs to be reproducible (Sandve et al. 2013). 537 

For eDNA metabarcoding studies, it is increasingly common to deposit a comprehensive sample 538 

mapping file (e.g., formatted in the QIIME tab-delimited style, containing the indexes used for 539 

creating libraries so that raw data can be de-multiplexed and properly trimmed) along with 540 

MOTU clustering or taxonomic binning of results, and documentation of all bioinformatics 541 

commands, in a complementary repository such as Dryad (http://datadryad.org/), GitHub 542 

(https://github.com/github), or FigShare (http://figshare.com). Sandve et al. (2013) provide 10 543 

rules that can be followed to ensure such reproducibility, and we strongly encourage researchers 544 

using eDNA metabarcoding methods to uphold these practices and take advantage of archiving 545 

intermediate steps (Box 2) of their analysis for full transparency. 546 

 547 

Emerging applications for eDNA metabarcoding 548 

Applications in ecology 549 

Quantifying the richness and abundance of species in natural communities is and will 550 

continue to be a goal in many ecological studies.  Information about species richness garnered 551 

from eDNA is not necessarily different from conventional approaches (Table 1), but the scale, 552 

speed, and comprehensiveness of that information is (Fig. 4).  For example, Drummond et al. 553 
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(2015) demonstrated the near-complete analysis of biodiversity (e.g., from bacteria to animals 554 

and plants) from top soil is possible. Collection of data on this taxonomic scale opens up new 555 

opportunities with respect to measuring community composition and turnover across space and 556 

time.  In addition to estimating species richness, a major area of research in ecology is 557 

determining whether observed community changes surpasses acceptable thresholds for certain 558 

desired ecosystem functions (Jackson et al. 2016). Biodiversity and ecosystem functioning 559 

research requires tracking species in multiple taxonomic groups and trophic levels, along with 560 

changes in ecosystem function. Environmental DNA metabarcoding has the potential to facilitate 561 

biodiversity and ecosystem function research by improving our knowledge of predator/prey 562 

relationships, mutualisms such as plant-pollinator interactions, and food webs in highly diverse 563 

systems composed of small cryptic species (e.g., De Vere et al. 2017; Hawkins et al. 2015; Xu et 564 

al. 2015). Knowledge of species co-occurrences and interactions in these instances will 565 

additionally foster the study of meta ecosystems and provide data to guide management 566 

decisions at the ecosystem scale (Bohan et al. 2017).  What will remain challenging is moving 567 

beyond richness estimates to also obtaining species abundance data (Fig. 2 & 4). 568 

 569 

Applications in conservation biology 570 

Given the rapid rate at which biodiversity is declining worldwide (Butchart et al. 2010), it 571 

is critical that we improve the effectiveness of strategies to halt or reverse this loss (Thomsen & 572 

Willerslev 2015; Valentini et al. 2016). Accordingly, developing tools that enable rapid, cost-573 

effective and non-invasive biodiversity assessment such as eDNA metabarcoding, especially for 574 

rare and cryptic species, is paramount (Fig. 4). Improved estimates of the distribution of 575 

vulnerable species, and done so non-invasively, would facilitate policy development and allow 576 
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for efficient targeting of management efforts across habitats (Kelly et al. 2014; Thomsen & 577 

Willerslev 2015). For example, documenting the presence of threatened species in a habitat can 578 

trigger a suite of actions under laws pertaining to biodiversity conservation (e.g., US Endangered 579 

Species Act). Frequently, data relevant to policy are derived from monitoring efforts mandated 580 

by environmental laws imparting a significant consequence to the data collected (Kelly et al. 581 

2014). 582 

Environmental DNA-based monitoring is likely to be a tremendous boon to often 583 

underfunded public agencies charged with compliance to data-demanding laws. Specifically, 584 

eDNA metabarcoding will be useful for monitoring communities when many species are of 585 

conservation concern. Vernal pools throughout California are a prime example because they 586 

contain 20 US federally listed endangered or threatened species of plants and animals.  587 

Monitoring species richness with soil and water samples from a habitat such as this would 588 

provide a comprehensive sampling method to ascertain needed community data for their 589 

conservation and management (Deiner et al. 2017a).  However, while eDNA metabarcoding may 590 

be important for non-invasively gaining access to the distribution of vulnerable species, it cannot 591 

be used to differentiate between alive and dead organisms or estimate many demographic 592 

parameters important of population viability analysis (Beissinger & McCullough 2002). 593 

Quantifying baselines of animal and plant species richness and departures from those 594 

baselines, is central to the assessment of environmental impact and conservation (Taylor & 595 

Gemmell 2016). The application of eDNA metabarcoding methods to different samples types, 596 

which taken together allow inference across time (e.g., surface water and sediment layers from a 597 

core in a lake, Fig. 1) provides a unique tool to document local extinctions and long-term 598 

changes in ecosystems. Extinction models often rely on and understanding extinction timelines 599 
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(reviewed in Thomsen & Willerslev 2015).  The efficiency of eDNA metabarcoding to track the 600 

timing of extinctions associated with previous glacial events has been demonstrated in mammals 601 

(Haile et al. 2009) and plants (Willerslev et al. 2014). Thus, environmental DNA metabarcoding 602 

of different sample types from the same site offers an excellent opportunity to better understand 603 

the extinction consequences of perturbations and could inform scenario modeling under climate 604 

change. 605 

 606 

Applications in invasion biology 607 

Because one of the first applications of eDNA to macro-organisms was the detection of 608 

North American bullfrogs in French ponds (Ficetola et al. 2008), the method immediately came 609 

to the attention of researchers interested in invasion biology (e.g., Egan et al. 2013; Goldberg et 610 

al. 2013; Jerde et al. 2011; Takahara et al. 2013; Tréguier et al. 2014). These initial studies, as 611 

well as much ongoing research, continue to be based on species-specific primers, where positive 612 

amplification provides occurrence evidence for a particular invasive species. In invasion biology 613 

with eDNA, such a targeted approach is referred to as “active” surveillance (Simmons et al. 614 

2015).  615 

On the contrary, eDNA metabarcoding makes it possible to detect the presence of many 616 

species simultaneously, including species not previously suspected of being present. This 617 

broader untargeted approach is called “passive” surveillance in management applications (Fig. 4) 618 

(Simmons et al. 2015). On the down side, due to a trade-off in primer specificity, we expect that 619 

eDNA metabarcoding may be less sensitive in detecting some species or that the detection rate of 620 

a species can change depending on species richness.  Adopting a dual approach of passive and 621 

active surveillance could be considered in cases where the risk of a new invasion is high, and 622 
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where cost effective eradication plans for undesirable species are likely to be successful (Lodge 623 

et al. 2016).  624 

Avoiding future introductions and reducing the spread of exotic species is paramount in  625 

natural resource policy (Lodge et al. 2016). Environmental DNA metabarcoding relevant to 626 

management includes early detection of incipient invasive populations in the environment, 627 

surveillance of invasion pathways, e.g., ballast water of ships (Egan et al. 2015; Zaiko et al. 628 

2015), and the live bait trade (Mahon et al. 2014). While eDNA metabarcoding is not yet 629 

routinely used for biosecurity regulation of invasive species or enforcement in many settings, it 630 

has the potential to become valuable monitoring tool for biological invasions.  An important 631 

challenge for the use of eDNA metabarcoding in invasive species detections are false positives 632 

and false negatives since both outcomes can trigger action or inaction when not required, causing 633 

a potentially large burden on entities responsible for invasive species mitigation and control (Fig. 634 

4).  Therefore, continued research to reduce or understand the nature of false positives and false 635 

negatives will reduce uncertainty in the tool and facilitate greater adoption. 636 

 637 

Applications in biomonitoring 638 

Pollution of air, water, and land resources generated from processes such as urbanization, 639 

food production, and mining is one of the many emerging global challenges we are facing in the 640 

21st century (Vörösmarty et al. 2010). Determine the origin, transport, and effects of most 641 

pollution is challenging because it accumulates through both point sources (e.g., wastewater 642 

effluent) and diffused sources related to land-use types (e.g., agriculture or urbanization). In this 643 

context, the presence of tolerant or absence of sensitive organisms has been used to determine 644 

the consequences of pollution on ecosystem health throughout the world and is termed biological 645 
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monitoring or ‘biomonitoring’ (Bonada et al. 2006). The extent to which animals and plants have 646 

been used in biomonitoring depends on the unique characteristics of the taxonomic group 647 

monitored and their relationship to the pollution of interest (Bonada et al. 2006; Stankovic et al. 648 

2014). Most biomonitoring programs take community composition and often abundance of taxa 649 

into account and calculate what is known as a biotic index (Friberg et al. 2011). Biotic indices 650 

take many forms and are typically surrogates for the impacts of pollution (e.g., SPEAR index for 651 

toxicant exposure in water, Liess et al. 2008).  652 

Applying eDNA metabarcoding in the context of biomonitoring is a major avenue of 653 

research. Metabarcoding of community DNA samples has shown greater sensitivity for detecting 654 

cryptic taxa or life stages and can alleviate the problem of identifying damaged specimens of 655 

which render morphological tools ineffective (Gibson et al. 2014; Hajibabaei et al. 2011). These 656 

two issues alone are known to create large variances in biotic index estimation (Pfrender et al. 657 

2010). Application of eDNA metabarcoding to animals and plants used in biomonitoring requires 658 

in-depth testing of conventional survey methods and eDNA-based approaches (Fig. 4), to 659 

understand whether species richness estimates derived from the two methods result in a similar 660 

measure for the biotic index of interest or whether new biotic indices need to be development 661 

that can simultaneously consider both forms of information. Promising steps forward are being 662 

made through the DNA AquaNet COST Action (http://dnaqua.net/) which is a consortium of 663 

over 26 European union countries and four international partners working together to develop 664 

genetic tools for bioassessment of aquatic ecosystems in Europe (Leese et al. 2016). 665 

 666 

Applications in citizen science and biodiversity education  667 
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The simplicity of the protocol used to collect environmental samples has created an 668 

avenue for citizen scientist programs to be built around surveying for biodiversity using eDNA 669 

(Biggs et al. 2015). With the development of sample kits from commercial companies 670 

specifically used for eDNA analysis (e.g., GENIDAQS, ID-GENE, Jonah Ventures, 671 

NatureMetrics, Spygen) there now exists a novel opportunity to engage the public in biodiversity 672 

science, which could accompany already established biodiversity events, such as BioBlitz 673 

(National Geographic Society). Use of eDNA metabarcoding in this context will likely provide 674 

an unprecedented tool for education and outreach about biodiversity, and increase awareness 675 

about its decline. Challenges that hinder integration of eDNA metabarcoding in citizen science 676 

projects and educational opportunities are the time and costs needed to process samples and user 677 

friendly data visualization tools to allow exploration of the data once provided.  Thus, finding 678 

ways to cut costs and speed up data generation (a goal common for any application of the tool), 679 

as well as creation of applications for exploration of data on smart phones and desktops alike is 680 

needed to propel the use of eDNA applications in citizen science and education. 681 

  682 

Conclusions 683 

As the tool of eDNA metabarcoding continues to develop, our understanding regarding 684 

the analysis of eDNA from macro-organismal communities, including optimal field, laboratory, 685 

and bioinformatics workflows will continue to improve in the foreseeable future. Concurrently, 686 

we need to gain a better understanding of the spatial and temporal relationship between eDNA 687 

and living communities to improve precision, accuracy, and to enhance the ecological and policy 688 

relevance of eDNA (Barnes & Turner 2016; Kelly et al. 2014). Ultimately, the errors and 689 

uncertainties associated with eDNA metabarcoding studies can often be mitigated by thoughtful 690 
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study design, appropriate primer choice, and robust sampling and replication: as Murray et al. 691 

(2015) emphasize, “no amount of high-end bioinformatics can compensate for poorly prepared 692 

samples, artefacts or contamination.” 693 

Over time, a loop in which improved eDNA metabarcoding methods reduce uncertainty 694 

about the meaning of both positive and negative eDNA detections for a species will in turn 695 

generate the motivation for continued improvements and use of  eDNA metabarcoding methods. 696 

Thus, resulting in the adoption of eDNA metabarcoding as a comparable method for estimating 697 

species richness. We predict that over the next decade eDNA metabarcoding of animals and 698 

plants will become a standard surveying tool that will complement conventional methods and 699 

accelerate our understanding of biodiversity across the planet.  700 
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Box 1: Community DNA versus environmental DNA metabarcoding of plants and animals  701 
 702 
Terms: 703 
Environmental DNA (eDNA). DNA captured from an environmental sample without first 704 
isolating any target organisms (Taberlet et al. 2012a). Traces of DNA can be from feces, mucus, 705 
skin cells, organelles, gametes or even extracellular DNA. Environmental DNA can be sampled 706 
from modern environments (e.g., seawater, freshwater, soil or air) or ancient environments (e.g., 707 
cores from sediment, ice or permafrost (e.g., cores from sediment, ice or permafrost, see 708 
Thomsen & Willerslev 2015). 709 
Community DNA. DNA is isolated from bulk-extracted mixtures of organisms separated from 710 
the environmental sample (e.g., soil or water).  711 
Macro-organism environmental DNA. Environmental DNA originating from animals and 712 
higher plants. 713 
Barcoding. First defined by Hebert et al. (2003), the term refers to taxonomic identification of 714 
species based on single specimen sequencing of diagnostic barcoding markers (e.g., COI, rbcL).  715 
Metabarcoding. Taxonomic identification of multiple species extracted from a mixed sample 716 
(community DNA or eDNA) which have been PCR amplified and sequenced on a high 717 
throughput platform (e.g., Illumina, Ion Torrent).  718 
High Throughput Sequencing (HTS). Sequencing techniques which allow for simultaneous 719 
analysis of millions of sequences compared to the Sanger sequence method of processing one 720 
sequence at a time. 721 
Community DNA metabarcoding: HTS of DNA extracted from specimens or whole organisms 722 
collected together, but first separated from the environmental sample (e.g., water or soil). 723 
Molecular Operational Taxonomic Unit (MOTU): Group identified through use of cluster 724 
algorithms and a predefined percent sequence similarity (e.g., 97%) (Blaxter et al. 2005). 725 
 726 

Since the inception of High Throughput Sequencing (HTS, Margulies et al. 2005), the 727 
use of metabarcoding as a biodiversity detection tool has drawn immense interest (e.g., Creer et 728 
al. 2016; Hajibabaei et al. 2011). However, there has yet to be clarity regarding what source 729 
material is used to conduct metabarcoding analyses (e.g., environmental DNA versus community 730 
DNA). Without clarity between these two source materials, differences in sampling, as well as 731 
differences in lab procedures, can impact subsequent bioinformatics pipelines used for data 732 
processing, and complicate the interpretation of spatial and temporal biodiversity patterns. Here 733 
we seek to clearly differentiate among the prevailing source materials used and their effect on 734 
downstream analysis and interpretation for environmental DNA metabarcoding of animals and 735 
plants compared to that of community DNA metabarcoding. 736 
 737 

With community DNA metabarcoding of animals and plants, the targeted groups are 738 
most often collected in bulk (e.g., soil, malaise trap, or net), individuals are removed from other 739 
sample debris and pooled together prior to bulk DNA extraction (Creer et al. 2016). In contrast, 740 
macro-organism eDNA is isolated directly from an environmental material (e.g., soil or water) 741 
without prior segregation of individual organisms or plant material from the sample and 742 
implicitly assumes that the whole organism is not present in the sample. Of course, community 743 
DNA samples may contain DNA from parts of tissues, cells, and organelles of other organisms 744 
(e.g., gut contents, cutaneous intracellular or extracellular DNA, etc.). Likewise, macro-organism 745 
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eDNA samples may inadvertently capture whole microscopic non-target organisms (e.g., 746 
protists, bacteria, etc.). Thus, the distinction can at least partly breaks down in practice. 747 
 748 

Another important distinction between community DNA and macro-organism eDNA is 749 
that sequences generated from community DNA metabarcoding can be taxonomically verified 750 
when the specimens are not destroyed in the extraction process.  Here sequences can then be 751 
generated from voucher specimens using Sanger sequencing. Since the samples for eDNA 752 
metabarcoding lack whole organisms, no such in situ comparisons can be made. Taxonomic 753 
affinities can therefore only be established by directly comparing obtained sequences (or through 754 
bioinformatically generated operational taxonomic units (MOTUs)), to sequences that are 755 
taxonomically annotated such as NCBI’s GenBank nucleotide database (Benson et al. 2013), 756 
BOLD (Ratnasingham & Hebert 2007), or to self-generated reference databases from Sanger-757 
sequenced DNA (Olds et al. 2016; Sønstebø et al. 2010; Willerslev et al. 2014). Then, to at least 758 
partially corroborate the resulting list of taxa, comparisons are made with conventional physical, 759 
acoustic, or visual-based survey methods conducted at the same time or compared with historical 760 
records from surveys for a location (see Table 1).  761 
 762 

The difference in source material between community DNA and eDNA, therefore, has 763 
distinct ramifications for interpreting the scale of inference for time and space about the 764 
biodiversity detected. From community DNA it is clear that the individual species were found in 765 
that time and place, but for eDNA, the organism which produced the DNA may be upstream 766 
from the sampled location (Deiner & Altermatt 2014), or the DNA may have been transported in 767 
the feces of a more mobile predatory species (e.g., birds depositing fish eDNA, Merkes et al. 768 
2014) or was previously present, but no longer active in the community and detection is from 769 
DNA that was shed years to decades before (Yoccoz et al. 2012). The latter means that the scale 770 
of inference both in space and time must be considered carefully when inferring the presence for 771 
the species in the community based on eDNA.  772 



33 

Box 2. Basic bioinformatic pipeline for eDNA metabarcoding for plants and animals 773 
Bioinformatic processing of sequence data is one of the most critical aspects of eDNA 774 

metabarcoding studies, helping to substantiate research findings, following field and lab work 775 
components. Standardization of bioinformatics in a ‘pipeline’ can ensure quality and 776 
reproducibility of findings; however, some level of customization is required across studies. 777 
Customization is needed to compensate for advances in sequencing technology, software 778 
workflows, and the question being addressed. Therefore, taking raw read data and turning it into 779 
a list of taxa, requires multiple quality assurance steps – some necessary, others optional. 780 
Reaching an absolute consensus for the approaches and software used is not necessary as these 781 
will always be in flux, but here we advise careful consideration of the following pre-processing 782 
steps at a minimum for HTS data before embarking on further analyses (e.g., for biodiversity 783 
estimates and statistical significance). We focus primarily on processing Illumina generated data 784 
sets and therefore if the technology is different, many of the bioinformatic tools highlighted and 785 
advice is transferable to pre-processing of data produced on other platforms, but may be 786 
different. 787 
 788 
Terms: 789 
Chimeras: PCR artefacts made of two or more combined sequences during the extension step of 790 
PCR amplification. 791 
Phred quality score: Quality scoring per nucleotide for Illumina sequencing providing the 792 
probability that a base call is incorrect.  793 
Sequence merging: Combining forward (R1) and reverse (R2) reads from paired – end (PE) 794 
sequencing, using criteria such as minimum overlap or quality score. 795 
Sequence trimming: The process of cutting / removing the beginning or end of sequencing 796 
reads. Can be performed either by searching for a specific sequence (removal of adaptors, 797 
indexes and primers) or based on quality score.  798 
Singletons: MOTUs that appear only once in the data are likely to be rare taxa, false positives, 799 
low level contamination, or unremovedchimeras, and should be treated with appropriate 800 
consideration. 801 
 802 
Primer – adaptor trimming. Preliminary steps of bioinformatics processing include de-803 
multiplexing of the samples based on the indices used (unique nucleotide tags incorporated into 804 
raw sequence data) and trimming (i.e., removal) of the adaptor sequences. The adaptors are 805 
specific DNA fragments which are added during library preparation for ligation of the DNA 806 
strands to the flow cell during Illumina sequencing. Additionally, the index sequences 807 
themselves and the primer sequences should be trimmed (e.g. using software such as Cutadapt, 808 
Trimmomatic, QIIME), allowing either zero or a low level of mismatch between the exact 809 
sequence of the primer or index and the observed reads.  810 
 811 
Merging or end trimming. Sequences from Illumina runs tend to drop in quality towards the 3’ 812 
end of the reads, as phasing leads to increased noise (and lower signal) in later chemistry cycles. 813 
Thus, the quality score of reads should be reviewed to allow informed decisions on the 814 
appropriate length of end trimming (single – end runs), merging (paired end runs) and 815 
subsequent sequence quality filters. Visualizing the quality scores from raw reads or de-816 
multiplexed sequences (using software like FastQC) will help with the selection of downstream 817 
quality cut-off levels. 818 
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When paired end (PE) sequencing is used for an amplicon of suitable size, the forward 819 
(R1) and reverse (R2) reads should be combined (merged) to form the complete amplicon. Using 820 
merged sequences improves accuracy since the lower quality bases at the tail ends of individual 821 
reads can be corrected based on the combined reads. Here, the minimum overlap for R1 and R2 822 
reads should be specified and ‘orphan’ reads with little or no overlap between forward and 823 
reverse pairs can be discarded. Inspection of the quality scores, as mentioned above, can provide 824 
an estimate of optimal parameters for merging of R1 and R2 reads. Even though a specific 825 
consensus does not exist yet, in many cases an overlap of at least > 20bp is selected (Deiner et al. 826 
2015; Gibson et al. 2015). 827 
 828 
Quality filtering. For most HTS platforms, a Phred score is calculated and subsequently used to 829 
determine the maximum error probabilities (Bokulich et al. 2013). Selected strategies include 830 
filtering based on a lower Phred score cut-off, usually set at least above 20 or 30 (Bista et al. 831 
2017; Elbrecht & Leese 2015; Hänfling et al. 2016). Quality filtering can also be performed 832 
based on maximum error (maxee) probability, which is also derived from Phred scores. The 833 
lower the maximum error, the stricter the cut-off. Selection of a maximum error filtering level of 834 
1 or 0.5 is common in macro-organism studies (Bista et al. 2017; Pawlowski et al. 2014; Port et 835 
al. 2016). Additionally, in the case of single-end sequencing, or when long amplicons without 836 
sufficient overlap of the forward and reverse reads are used, it is advised that trimming should be 837 
performed from the appropriate end. It is often the case that reads are trimmed to a common 838 
length, which facilitates alignment downstream and minimizes miscalled bases since a merging 839 
step cannot be used. 840 
 841 
Removing short reads. Many studies also select to remove short reads from the dataset before 842 
clustering since the presence of high length variation could influence the clustering process (see 843 
USEARCH manual, Edgar 2010). These sequences could result from sequencing of primer 844 
dimers which have not been removed (Pawlowski et al. 2014). Different studies select a variety 845 
of minimum length reads, from very short 20bp (Valentini et al. 2016), to medium 60 – 80 bp 846 
(Pawlowski et al. 2014; Shaw et al. 2016) and up to 100 bp (Bista et al. 2017; Gibson et al. 847 
2015; Hänfling et al. 2016; Pawlowski et al. 2014). Note that some de-multiplexing or quality 848 
filtering workflows may automatically set a minimum sequence length when processing input 849 
data and it is advisable to check whether such a parameter is included by default. 850 
 851 
Removing singletons and chimeras. Important steps after MOTU clustering involve removal of 852 
singletons and chimeras. Chimeras are by-products of the PCR amplification process from two or 853 
more parental sequences (chimeric), most commonly produced through an incomplete extension 854 
step (Edgar et al. 2011). It has been shown that when unique reads, such as chimeras and 855 
singletons, are withheld in analysis, the estimation of diversity can be severely inflated (Kunin et 856 
al. 2010). The nature of the chimeric sequences, which can be present as high quality reads, does 857 
not enable their removal directly through quality based end-trimming (Coissac et al. 2012). 858 
Removal of chimeras can be performed either de novo or based on a reference database. Most 859 
common practice to date is the de novo method since a sufficient reference database may not be 860 
available. Despite the variation in software used such as UCHIME (Edgar et al. 2011), obitools 861 
(Boyer et al. 2016), or ChimeraSlayer (Haas et al. 2011), there is a consensus regarding the 862 
importance of removing chimeras and singletons as a minimum quality control for 863 
bioinformatics pipeline. 864 
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 865 
Abundance filtering. In addition to quality filtering based on quality scores and removal of 866 
chimeras and singletons, many studies also employ further filtering for removal of low 867 
abundance sequences (Murray et al. 2015). This step arises from the need to control for 868 
laboratory contamination or because of cluster contamination on the flow cell (unique to 869 
Illumina platforms) (Olds et al. 2016). 870 

The process of applying abundance filtering requires setting an MOTU abundance 871 
threshold by which MOTUs are only retained in analysis if their relative abundance is higher 872 
than the selected threshold (Bokulich et al. 2013). Selection of a threshold varies between studies 873 
and there is no generally accepted definition of what constitutes an insufficiently abundant read 874 
(Murray et al. 2015), perhaps with the exception of singletons. Abundance filtering may be 875 
applied minimally or avoided entirely, especially if stringent quality trimming parameters are 876 
applied to raw reads and detection of “rare” MOTUs is an important aspect of a study (Bokulich 877 
et al. 2013). Another option that could be used involves selection of a threshold based on 878 
availability of empirical data as was done in Valentini et al. (2016). An increasing number of 879 
studies have employed the sequencing of positive controls to establish a threshold level 880 
(Hänfling et al. 2016; Port et al. 2016; Stoeckle et al. 2017). Technical replicates can also be 881 
used to assess consistency as was shown to be effective with assessing omnivore diets (De Barba 882 
et al. 2014). 883 

Using a positive control defined error level works by identifying the abundance of 884 
sequences in the control sample that belong to non-target taxa and can be the result of errors such 885 
as contamination. Furthermore, the distribution of phiX reads assigned to target samples has been 886 
used to investigate the presence of “tag-jumps” (Schnell et al. 2015a) and mis-assigned reads 887 
during de-multiplexing (Hänfling et al. 2016; Olds et al. 2016). The exact mechanisms for mis-888 
assignment of reads remain unknown, but increasingly many studies are reporting this error to be 889 
between 0.01 and 0.03 % of reads (Hänfling et al. 2016; Olds et al. 2016; Stoeckle et al. 2017). 890 
Adjustments for this include use of a threshold approach based negative and/or positive controls 891 
and removes a low number of reads from any given sample. The issue of abundance filtering 892 
most significantly causes uncertainty in low abundance MOTUs and will continue to be a 893 
problem for detection of rare species. Therefore, to avoid negative impacts to scientific insights 894 
or management decisions, careful consideration and transparency regarding how technical 895 
artifacts are dealt with during bioinformatic data analysis is needed until these artifacts are well 896 
understood. 897 

 898 
Recording removed data. For all quality control steps the data removal should be transparent. 899 
Often studies report the total number of sequences obtained, but then rarely show how each 900 
quality filtering step affects the number of sequences used in testing ecological hypothesis nor do 901 
researchers provide the subset of sequences that were retained or omitted. Deleting data without 902 
a clear justification does not allow transparency. Therefore, including a supplemental table in 903 
eDNA metabarcoding studies showing the number of sequences remaining after each filtration 904 
step is advised and archiving the subset of reads retained after each filtering step on a platform 905 
such as Dryad (http://datadryad.org/) or archiving the exact pipeline with version control 906 
information on a platform such as GitHub (https://github.com/) will allow for greater 907 
transparency and reproducibility of quality filtering.  908 



36 

Box 3: How to transform reads from HTS platforms into measures of richness  909 
 910 
MOTU clustering. While this step is not always necessary and depends on the target set of taxa 911 
(Lacoursière-Roussel et al. 2016), the amplicon length sequenced (Deiner et al. 2016), and 912 
completeness of the reference database (Chain et al. 2016), clustering of sequencing reads into 913 
MOTUs is often performed prior to taxonomic assignment. MOTU clustering is the process 914 
whereby multiple reads are grouped according to set criteria of similarity based on an initial seed 915 
(Creer et al. 2016; Egan et al. 2013). Here, a centroid sequence is selected and depending on the 916 
set radius or similarity cut-off, closely related sequences are grouped under each centroid 917 
sequence (USEARCH, Edgar 2010). The level of similarity selected depends on the study and 918 
taxon used, based on the knowledge of intraspecific diversity of the studied taxon. Commonly 919 
used cut-offs range from 97% to 99% (Bista et al. 2017; Fahner et al. 2016; Olds et al. 2016). 920 
For example, the cut-off selected could depend on known levels of intraspecific diversity of the 921 
studied taxon, which could be estimated from an existing reference database. Some commonly 922 
used clustering algorithms include USEARCH (Edgar 2010), VSEARCH (Rognes et al. 2016), 923 
CROP (Bayesian clustering algorithm) (Hao et al. 2011), swarm (Mahé et al. 2014), and mothur 924 
(an alignment-based clustering method, Schloss et al. 2009). 925 
 926 
Taxonomic assignment. Identification of HTS reads is achieved through a comparison of 927 
anonymous MOTU clusters/centroid sequences or direct comparisons of reads remaining after 928 
quality filtering against a reference database. Depending on the taxon of study and the marker 929 
used, the reference database may consist of publicly available sequences or study-generated 930 
reference sequences. 931 
 932 
The challenges of taxonomic assignment have been the subject of a considerable literature so we 933 
only briefly discuss this important aspect of the bioinformatics pipeline (e.g., Bazinet & 934 
Cummings 2012). A number of different approaches have been suggested including assignment 935 
based on sequence similarity via alignment programs like BLAST or similarity searches using 936 
Hidden Markov Models such as jMMOTU (Jones et al. 2011), MG-RAST (Glass et al. 2010), 937 
sequence composition and machine learning approaches (e.g., RDP (Wang et al. 2007), TACOA 938 
(Diaz et al. 2009)), phylogenetic placement (e.g., pplacer Matsen et al. 2010), probabilistic 939 
taxonomic placement (e.g., PROTAX (Somervuo et al. 2016; Somervuo et al. 2017), minimum 940 
entropy decomposition (e.g., oligotyping Eren et al. 2015), MEGAN (Huson et al. 2007), and 941 
ecotag (Boyer et al. 2016). A number of widely used programs use combinations of these 942 
methods, for example, the program SAP (Munch et al. 2008) uses BLAST searches of the NCBI 943 
database and phylogenetic reconstruction to establish taxonomic identity of query sequences. 944 
Most of these methods and various derivatives are nicely discussed and compared by Bazinet and 945 
Cummings (2012). Two major determinants of the utility of these different approaches are the 946 
specific eDNA markers and the breadth and resolution of reference databases. Some markers 947 
have better representation in available databases and greater coverage of relevant species 948 
diversity. Taxonomic assignment using the BLAST algorithm (Camacho et al. 2009) is 949 
commonly used and depending on the study, different selection criteria are specified, such as e-950 
value, maximum ID or length of matching sequence, number of top hits selected, etc. Caution is 951 
warranted in strictly relying on this approach, since errors in the curation of sequences in 952 
publicly available databases can propagate through the analysis and lead to misidentification of 953 
sequences. Ideally, a combination of approaches is used and when feasible the resultant species 954 
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assignments should be vetted with independent data based on the known distribution and ecology 955 
of the species. 956 
 957 
Diversity analysis. The goal of most eDNA metabarcoding studies is to accurately characterize 958 
the species richness of the community under study. Calculation of diversity indices using 959 
appropriate software allows modeling and ecological association of sequencing results. 960 
Important considerations when attempting ecological associations include appropriate data 961 
standardization to account for variations in sequencing depth and the careful selection of 962 
diversity indexes. The most common assessments include alpha-diversity (rarefaction, 963 
visualization of taxonomic profiles), and beta-diversity (Principal Components/Coordinates 964 
Analysis, NDMS ordination, etc.), prior to hypothesis testing via downstream statistical analysis.  965 
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Table 1: Representative studies comparing richness estimates with traditional sampling or historical data for a geographic location to 1478 

that of eDNA metabarcoding. 1479 

       

Habitat 

Macro-
organism 
taxonomic focus 

eDNA sample 
type Traditional sampling method 

eDNA efficacy 
finding* Authors Year 

Air Plants air pollen trap morphological identification 
Better taxonomic 
resolution Kraaijeveld et al. 2015 

Freshwater Fish flowing water depletion-based electro fishing Higher diversity Olds et al. 2016 

Freshwater Invertebrates flowing water 
kicknet in stream and historical 
data Higher diversity Deiner et al. 2016 

Freshwater Fish stagnant water 

gill-net, trapping, 
hydroacoustics, analysis of 
recreational anglers’ catches Complementary Hänfling et al. 2016 

Freshwater 
Reptiles, 
amphibians stagnant water 

species distribution model based 
on historical data (i.e. 
distribution range and habitat 
type) 

Increase species 
distribution 
knowledge 

Lacoursière-
Roussel et al. 2016 

Freshwater Amphibians, fish 
stagnant water; 
flowing water 

amphibians: visual encounter 
survey, mesh hand-net; Fish: 
electrofishing, and/or netting 
protocols (fyke, seine, gill) 

Greater detection 
probability Valentini et al. 2016 

Freshwater 

Amphibians, 
fish, mammals, 
invertebrates 

stagnant water; 
flowing water 

active dip-netting, fresh tracks or 
scat, electrofishing with active 
dip-netting Complementary Thomsen et al. 2012 

Freshwater Fish 

stagnant water; 
flowing water; 
surface 
sediment fyke net Higher diversity Shaw et al. 2016 

Freshwater Invertebrates 

water column; 
surface 
sediment 

sediment collected using a Van 
Veen grab Higher diversity Gardham et al. 2014 
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Freshwater Fish / Diptera 

Surface and 
bottom water 
column 

Long-term data, electro fishing 
(fish) and emerging traps 
(Diptera) at time of eDNA 
sampling 

Higher diversity 
compared to 
sampling but lower 
diversity compared 
to long-term data Lim et al. 2017 

Marine Fish 

Surface and 
bottom water 
column Long term observation Complementary Yamamoto et al. 2017 

Marine Fish 
Bottom water 
column Trawl catch data 

Similar Family 
richness Thomsen et al.  2016 

Marine Fish water column scuba diving Higher diversity Port et al. 2015 

Terrestrial Plants honey 

melissopalynology (i.e. pollen 
grains retrieved from honey are 
identified morphologically) Complementary Hawkins et al. 2015 

Terrestrial Mammals, plants midden pellets historical surveys Higher diversity Murray et al. 2012 

Terrestrial Mammals saliva 
local knowledge (i.e. physical 
evidence) and camera data Complementary Hopken et al. 2016 

Terrestrial 

Birds, 
invertebrates, 
plants top soil 

invertebrates: leaf litter samples 
& pitfall traps; reptiles: pitfall 
traps and under artificial ground 
covers; birds: distance sampling 
method; plants: above-ground 
surveys 

Complementary 
for plants & 
invertebrates Drummond et al. 2015 

Terrestrial Earthworms top soil 

irrigated quadrats with 10 L of 
allyl isothiocyanate solution and 
hand collected emerging worms Complementary Pansu et al. 2015 

Terrestrial Plants top soil historical surveys Complementary Jørgensen et al. 2012 

Terrestrial Plants top soil above-ground surveys 

Complementary 
and better 
taxonomic 
resolution Yoccoz et al. 2012 
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Terrestrial Vertebrates top soil 

local knowledge from safari 
parks, zoological gardens and 
farms; visual observations; 
historical surveys Complementary Andersen et al. 2012 

 1480 
* Complementary means the two survey methods detected different diversity, but does not exclude that some of the diversity was 1481 

detected by both methods. Higher diversity means the study found more diversity was detected compared to conventional, but does 1482 

not exclude that some of the diversity was not detected by both methods. Better taxonomic resolution means that sequence based 1483 

identifications could be resolved to a lower taxonomic rank compared with the conventional method. 1484 
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Figure legends 1485 

Figure 1:  Environmental DNA sample types have different spatial and temporal scopes of 1486 

inference from different habitats. Consider each sample type as a single sample from that 1487 

environment.  Placement of a sample type in a quadrant is not quantitive, but represents a 1488 

common scale at which it has been used.  Dashed arrows indicate the potential for a sample type 1489 

to confer information at multiple scales of inference, but additional research to quantify these 1490 

possibilities in needed. 1491 

 1492 

Figure 2: Challenges for estimating abundance from environmental DNA metabarcoding. 1493 

For simplicity, assume one DNA molecule depicted in the pond is equal to one organism and 1494 

colors represent different species. Additionally for this example, assume that sampling is no 1495 

biased (i.e., DNA copies are sampled in their true abundance), that boxes surrounding DNA 1496 

molecules represent 1 uL and one DNA molecule represents 1 ng of DNA.  Thus, values 1497 

illustrated show the effect of primer bias, sub-sampling and their combination on the ability to 1498 

estimate abundance. 1499 

 1500 

Figure 3: Important guiding questions for consideration in the design and implementation 1501 

phases of an environmental DNA metabarcoding study. 1502 

 1503 

Figure 4: Opportunities and challenges of using environmental DNA as a tool for assessing 1504 

community structure in different fields of study. The tool is reliant on a foundation (blue half 1505 

circle) of continued research to improve technological aspects and continued development of 1506 

DNA-based reference libraries for the identification of sequences found in the environment.1507 
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