68 research outputs found

    A Dual-Tracer Method for Differentiating Transendothelial Transport from Paracellular Leakage in Vivo and in Vitro

    Get PDF
    Inflammation-induced impaired function of vascular endothelium may cause leakage of plasma proteins that can lead to edema. Proteins may leave the vascular lumen through two main paracellular and transcellular pathways. As the first involves endothelial cell (EC) junction proteins and the second caveolae formation, these two pathways are interconnected. Therefore, it is difficult to differentiate the prevailing role of one or the other pathway during pathology that causes inflammation. Here we present a newly developed dual-tracer probing method that allows differentiation of transcellular from paracellular transport during pathology. This fluorescence-based method can be used in vitro to test changes in EC layer permeability and in vivo in various animal vascular preparations. The method is based on comparison of low molecular weight molecule (LMWM) transport to that of high molecular weight molecule (HMWM) transport through the EC layer or the vascular wall during physiological and pathological conditions. Since the LMWM will leak through mainly the paracellular and HMWM will move through paracellular (when gaps between the ECs are wide enough) and transcellular pathways, the difference in transport rate (during normal conditions and pathology) of these molecules will indicate the prevailing transport pathway involved in overall protein crossing of vascular wall. Thus, the novel approach of assessing the transport kinetics of different size tracers in vivo by intravital microscopy can clarify questions related to identification of target pathways for drug delivery during various pathologies associated with elevated microvascular permeability

    Role of Fibrinogen in Vascular Cognitive Impairment in Traumatic Brain Injury

    Get PDF
    Fibrinogen (Fg) is one of the biomarkers of inflammation and a high risk factor for many cardiovascular and cerebrovascular diseases. Elevated levels of Fg (hyperfibrinogenemia, HFg) are also associated with traumatic brain injury (TBI). HFg in blood alters vascular reactivity and compromises integrity of endothelial cell layer that ultimately can result in extravasation of Fg and other plasma proteins. Proteins deposited in extravascular space may form plaques which can lead to neurodegeneration. Among these plasma proteins are amyloid beta (Aβ) and/or cellular prion protein (PrPC) that can form degradation resistant complexes with Fg and are known to be involved in memory impairment. The purpose of this chapter is to propose and discuss some possible mechanisms involved in HFg-mediated cerebrovascular dysfunction leading to neuronal degeneration during TBI

    Nature of eclipsing pulsars

    Full text link
    We present a model for pulsar radio eclipses in some binary systems, and test this model for PSRs B1957+20 and J2051-0827. We suggest that in these binaries the companion stars are degenerate dwarfs with strong surface magnetic fields. The magnetospheres of these stars are permanently infused by the relativistic particles of the pulsar wind. We argue that the radio waves emitted by the pulsar split into the eigenmodes of the electron-positron plasma as they enter the companion's magnetosphere and are then strongly damped due to cyclotron resonance with the ambient plasma particles. Our model explains in a natural way the anomalous duration and behavior of radio eclipses observed in such systems. In particular, it provides stable, continuous, and frequency-dependent eclipses, in agreement with the observations. We predict a significant variation of linear polarization both at eclipse ingress and egress. In this paper we also suggest several possible mechanisms of generation of the optical and XX-ray emission observed from these binary systems.Comment: 12 pages, 5 figures, submitted to Ap

    Stream instabilities in relativistically hot plasma

    Full text link
    The instabilities of relativistic ion beams in a relativistically hot electron background are derived for general propagation angles. It is shown that the Weibel instability in the direction perpendicular to the streaming direction is the fastest growing mode, and probably the first to appear, consistent with the aligned filaments that are seen in PIC simulations. Oblique, quasiperpendicular modes grow almost as fast, as the growth rate varies only moderately with angle, and they may distort or corrugate the filaments after the perpendicular mode saturates.Comment: 10 pages, 6 figure

    Hydrogen Sulfide Mitigates Cardiac Remodeling During Myocardial Infarction via Improvement of Angiogenesis

    Get PDF
    Exogenous hydrogen sulfide (H2S) leads to down-regulation of inflammatory responses and provides myocardial protection during acute ischemia/reperfusion injury; however its role during chronic heart failure (CHF) due to myocardial infarction (MI) is yet to be unveiled. We previously reported that H2S inhibits antiangiogenic factors such, as endostatin and angiostatin, but a little is known about its effect on parstatin (a fragment of proteinase-activated receptor-1, PAR-1). We hypothesize that H2S inhibits parstatin formation and promotes VEGF activation, thus promoting angiogenesis and significantly limiting the extent of MI injury. To verify this hypothesis MI was created in 12 week-old male mice by ligation of left anterior descending artery (LAD). Sham surgery was performed except LAD ligation. After the surgery mice were treated with sodium hydrogen sulfide (30 μmol/l NaHS, a donor for H2S, in drinking water) for 4 weeks. The LV tissue was analyzed for VEGF, flk-1 and flt-1, endostatin, angiostatin and parstatin. The expression of VEGF, flk-1 and flt-1 were significantly increased in treated mice while the level of endostatin, angiostatin and parstatin were decreased compared to in untreated mice. The echocardiography in mice treated with H2S showed the improvement of heart function compared to in untreated mice. The X-ray and Doppler blood flow measurements showed enhancement of cardiac-angiogenesis in mice treated with H2S. This observed cytoprotection was associated with an inhibition of anti-angiogenic proteins and stimulation of angiogenic factors. We established that administration of H2S at the time of MI ameliorated infarct size and preserved LV function during development of MI in mice. These results suggest that H2S is cytoprotective and angioprotective during evolution of MI

    Remodeling of Retinal Architecture in Diabetic Retinopathy: Disruption of Ocular Physiology and Visual Functions by Inflammatory Gene Products and Pyroptosis

    Get PDF
    Diabetic patients suffer from a host of physiological abnormalities beyond just those of glucose metabolism. These abnormalities often lead to systemic inflammation via modulation of several inflammation-related genes, their respective gene products, homocysteine metabolism, and pyroptosis. The very nature of this homeostatic disruption re-sets the overall physiology of diabetics via upregulation of immune responses, enhanced retinal neovascularization, upregulation of epigenetic events, and disturbances in cells’ redox regulatory system. This altered pathophysiological milieu can lead to the development of diabetic retinopathy (DR), a debilitating vision-threatening eye condition with microvascular complications. DR is the most prevalent cause of irreversible blindness in the working-age adults throughout the world as it can lead to severe structural and functional remodeling of the retina, decreasing vision and thus diminishing the quality of life. In this manuscript, we attempt to summarize recent developments and new insights to explore the very nature of this intertwined crosstalk between components of the immune system and their metabolic orchestrations to elucidate the pathophysiology of DR. Understanding the multifaceted nature of the cellular and molecular factors that are involved in DR could reveal new targets for effective diagnostics, therapeutics, prognostics, preventive tools, and finally strategies to combat the development and progression of DR in susceptible subjects

    Inflammogenesis of Secondary Spinal Cord Injury

    Get PDF
    Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine.Grant #NPRP 4-571-3-171 from the Qatar National Research Fund(a member of Qatar Foundation)

    Vascular Effects on Cerebrovascular Permeability and Neurodegeneration

    No full text
    Neurons and glial cells in the brain are protected by the blood brain barrier (BBB). The local regulation of blood flow is determined by neurons and signal conducting cells called astrocytes. Although alterations in neurons and glial cells affect the function of neurons, the majority of effects are coming from other cells and organs of the body. Although it seems obvious that effects beginning in brain vasculature would play an important role in the development of various neuroinflammatory and neurodegenerative pathologies, significant interest has only been directed to the possible mechanisms involved in the development of vascular cognitive impairment and dementia (VCID) for the last decade. Presently, the National Institute of Neurological Disorders and Stroke applies considerable attention toward research related to VCID and vascular impairments during Alzheimer’s disease. Thus, any changes in cerebral vessels, such as in blood flow, thrombogenesis, permeability, or others, which affect the proper vasculo-neuronal connection and interaction and result in neuronal degeneration that leads to memory decline should be considered as a subject of investigation under the VCID category. Out of several vascular effects that can trigger neurodegeneration, changes in cerebrovascular permeability seem to result in the most devastating effects. The present review emphasizes the importance of changes in the BBB and possible mechanisms primarily involving fibrinogen in the development and/or progression of neuroinflammatory and neurodegenerative diseases resulting in memory decline

    Localization of Fibrinogen in the Vasculo-Astrocyte Interface after Cortical Contusion Injury in Mice

    No full text
    Besides causing neuronal damage, traumatic brain injury (TBI) is involved in memory reduction, which can be a result of alterations in vasculo-neuronal interactions. Inflammation following TBI is involved in elevation of blood content of fibrinogen (Fg), which is known to enhance cerebrovascular permeability, and thus, enhance its deposition in extravascular space. However, the localization of Fg in the extravascular space and its possible interaction with nonvascular cells are not clear. The localization of Fg deposition in the extravascular space was defined in brain samples of mice after cortical contusion injury (CCI) and sham-operation (control) using immunohistochemistry and laser-scanning confocal microscopy. Memory changes were assessed with new object recognition and Y-maze tests. Data showed a greater deposition of Fg in the vascular and astrocyte endfeet interface in mice with CCI than in control animals. This effect was accompanied by enhanced neuronal degeneration and reduction in short-term memory in mice with CCI. Thus, our results suggest that CCI induces increased deposition of Fg in the vasculo-astrocyte interface, and is accompanied by neuronal degeneration, which may result in reduction of short-term memory

    Fibrinogen Interaction with Astrocyte ICAM-1 and PrPC Results in the Generation of ROS and Neuronal Death

    No full text
    Many neuroinflammatory diseases, like traumatic brain injury (TBI), are associated with an elevated level of fibrinogen and short-term memory (STM) impairment. We found that during TBI, extravasated fibrinogen deposited in vasculo-astrocyte interfaces, which was associated with neurodegeneration and STM reduction. The mechanisms of this fibrinogen-astrocyte interaction and its functional role in neurodegeneration are still unclear. Cultured mouse brain astrocytes were treated with fibrinogen in the presence or absence of function-blocking antibody or peptide against its astrocyte receptors intercellular adhesion molecule-1 (ICAM-1) or cellular prion protein (PrPC), respectively. Fibrinogen interactions with astrocytic ICAM-1 and PrPC were characterized. The expression of pro-inflammatory markers, generations of reactive oxygen species (ROS) and nitric oxide (NO) in astrocytes, and neuronal death caused by astrocyte-conditioned medium were assessed. Data showed a strong association between fibrinogen and astrocytic ICAM-1 or PrPC, overexpression of pro-inflammatory cytokines and overproduction of ROS and NO, resulting in neuronal apoptosis and death. These effects were reduced by blocking the function of astrocytic ICAM-1 and PrPC, suggesting that fibrinogen association with its astrocytic receptors induce the release of pro-inflammatory cytokines, resulting in oxidative stress, and ultimately neuronal death. This can be a mechanism of neurodegeneration and the resultant STM reduction seen during TBI
    corecore