1,434 research outputs found

    PKM and the maintenance of memory.

    Get PDF
    How can memories outlast the molecules from which they are made? Answers to this fundamental question have been slow coming but are now emerging. A novel kinase, an isoform of protein kinase C (PKC), PKMzeta, has been shown to be critical to the maintenance of some types of memory. Inhibiting the catalytic properties of this kinase can erase well-established memories without altering the ability of the erased synapse to be retrained. This article provides an overview of the literature linking PKMzeta to memory maintenance and identifies some of the controversial issues that surround the bold implications of the existing data. It concludes with a discussion of the future directions of this domain

    The cellular mechanisms of learning in Aplysia : of blind men and elephants

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2006. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 210 (2007): 271-279.Until recently, investigations of the neurobiological substrates of simple forms of learning and memory in the marine snail Aplysia have focused mostly on plastic changes that occur within the presynaptic sensory neurons. Here, I summarize the results of recent studies that indicate that exclusively presynaptic processes cannot account for simple forms of learning in Aplysia. In particular, I present evidence that postsynaptic mechanisms play a far more important role in nonassociative learning in Aplysia than has been appreciated before now. Moreover, I describe recent data that suggests the intriguing hypothesis that the persistent, learning-induced changes in Aplysia sensory neurons might depend critically on postsynaptic signals for their induction. Finally, I discuss the potential applicability of this hypothesis to learning-related synaptic plasticity in the mammalian brain.The work from my laboratory discussed in this review was supported by National Institutes of Health Grants NS29563 and MH068543

    David L. Glanzman

    Get PDF

    Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia.

    Get PDF
    Long-term memory (LTM) is believed to be stored in the brain as changes in synaptic connections. Here, we show that LTM storage and synaptic change can be dissociated. Cocultures of Aplysia sensory and motor neurons were trained with spaced pulses of serotonin, which induces long-term facilitation. Serotonin (5HT) triggered growth of new presynaptic varicosities, a synaptic mechanism of long-term sensitization. Following 5HT training, two antimnemonic treatments-reconsolidation blockade and inhibition of PKM--caused the number of presynaptic varicosities to revert to the original, pretraining value. Surprisingly, the final synaptic structure was not achieved by targeted retraction of the 5HT-induced varicosities but, rather, by an apparently arbitrary retraction of both 5HT-induced and original synapses. In addition, we find evidence that the LTM for sensitization persists covertly after its apparent elimination by the same antimnemonic treatments that erase learning-related synaptic growth. These results challenge the idea that stable synapses store long-term memories

    Differential Classical Conditioning of the Gill-Withdrawal Reflex In Aplysia Recruits Both Nmda Receptor-Dependent Enhancement and Nmda Receptor-Dependent Depression Of the Reflex

    Get PDF
    Differential classical conditioning of the gill-withdrawal response (GWR) in Aplysia can be elicited by training in which a conditioned stimulus (CS) delivered to one side of the siphon (the CS+) is paired with a noxious unconditioned stimulus (US; tail shock), while a second conditioned stimulus (the CS-), delivered to a different siphon site, is unpaired with the US. NMDA receptor(NMDAR) activation has been shown previously to be critical for nondifferential classical conditioning in Aplysia. Here, we used a semi-intact preparation to test whether differential classical conditioning of the GWR also depends on activation of NMDARs. Differential training produced conditioned enhancement of the reflexive response to the CS+ and a reduction in the response to the CS-. Comparison of the results after differential training with those after training in which only the two CSs were presented (CS-alone experiments) indicated that the decrement in the response to CS-after differential training was not caused by habituation. Surprisingly, differential training in the NMDAR antagonist APV(DL-2-amino-5-phosphonovalerate) blocked not only the conditioned enhancement of the GWR, but also the conditioning-induced depression of the GWR. We suggest that differential conditioning involves an NMDAR-dependent, competitive interaction between the separate neural pathways activated by the CS+ and CS-

    Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade.

    Get PDF
    The zebrafish larva has been a valuable model system for genetic and molecular studies of development. More recently, biologists have begun to exploit the surprisingly rich behavioral repertoire of zebrafish larvae to investigate behavior. One prominent behavior exhibited by zebrafish early in development is a rapid escape reflex (the C-start). This reflex is mediated by a relatively simple neural circuit, and is therefore an attractive model behavior for neurobiological investigations of simple forms of learning and memory. Here, we describe two forms of short-lived habituation of the C-start in response to brief pulses of auditory stimuli. A rapid form, persisting for ≄1 min but <15 min, was induced by 120 pulses delivered at 0.5-2.0 Hz. A more extended form (termed "short-term habituation" here), which persisted for ≄25 min but <1 h, was induced by spaced training. The spaced training consisted of 10 blocks of auditory pulses delivered at 1 Hz (5 min interblock interval, 900 pulses per block). We found that these two temporally distinguishable forms of habituation are mediated by different cellular mechanisms. The short-term form depends on activation of N-methyl-d-aspartate receptors (NMDARs), whereas the rapid form does not

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope

    Get PDF
    Globular clusters with their large populations of millisecond pulsars (MSPs) are believed to be potential emitters of high-energy gamma-ray emission. Our goal is to constrain the millisecond pulsar populations in globular clusters from analysis of gamma-ray observations. We use 546 days of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular clusters. Steady point-like high-energy gamma-ray emission has been significantly detected towards 8 globular clusters. Five of them (47 Tucanae, Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices (0.7<Γ<1.4)(0.7 < \Gamma <1.4) and clear evidence for an exponential cut-off in the range 1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral indices (1.0<Γ<1.7)(1.0 < \Gamma < 1.7), however the presence of an exponential cut-off can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC 6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral properties. From the observed gamma-ray luminosities, we estimate the total number of MSPs that is expected to be present in these globular clusters. We show that our estimates of the MSP population correlate with the stellar encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters, commensurate with previous estimates. The observation of high-energy gamma-ray emission from a globular cluster thus provides a reliable independent method to assess their millisecond pulsar populations that can be used to make constraints on the original neutron star X-ray binary population, essential for understanding the importance of binary systems in slowing the inevitable core collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J. Kn\"odlseder, N. Webb, B. Pancraz
    • 

    corecore