3,626 research outputs found

    Anomaly-free U(1) gauge symmetries in neutrino seesaw flavor models

    Full text link
    Adding right-handed neutrino singlets and/or fermion triplets to the particle content of the Standard Model allows for the implementation of the seesaw mechanism to give mass to neutrinos and, simultaneously, for the construction of anomaly-free gauge group extensions of the theory. We consider Abelian extensions based on an extra U(1)_X gauge symmetry, where X is an arbitrary linear combination of the baryon number B and the individual lepton numbers L_{e,mu,tau}. By requiring cancellation of gauge anomalies, we perform a detailed analysis in order to identify the charge assignments under the new gauge symmetry that lead to neutrino phenomenology compatible with current experiments. In particular, we study how the new symmetry can constrain the flavor structure of the Majorana neutrino mass matrix, leading to two-zero textures with a minimal extra fermion and scalar content. The possibility of distinguishing different gauge symmetries and seesaw realizations at colliders is also briefly discussed.Comment: 12 pages, 2 figures, 7 tables; comments and references added, a new subsection with nonstandard interactions of neutrinos included; final version to appear in Phys. Rev.

    Number of fermion generations from a novel Grand Unified model

    Get PDF
    Electroweak interactions based on a gauge group SU(3)L×U(1)X\rm SU(3)_L \times U(1)_X, coupled to the QCD gauge group SU(3)c\rm SU(3)_c, can predict the number of generations to be multiples of three. We first try to unify these models within SU(N) groups, using antisymmetric tensor representations only. After examining why these attempts fail, we continue to search for an SU(N) GUT that can explain the number of fermion generations. We show that such a model can be found for N=9N=9, with fermions in antisymmetric rank-1 and rank-3 representations only, and examine the constraints on various masses in the model coming from the requirement of unification.Comment: 17 pages, 1 eps figur

    SU(5)xSU(5) unification revisited

    Get PDF
    The idea of grand unification in a minimal supersymmetric SU(5)xSU(5) framework is revisited. It is shown that the unification of gauge couplings into a unique coupling constant can be achieved at a high-energy scale compatible with proton decay constraints. This requires the addition of a minimal particle content at intermediate energy scales. In particular, the introduction of the SU(2)_L triplets belonging to the (15,1)+(\bar{15},1) representations, as well as of the scalar triplet \Sigma_3 and octet \Sigma_8 in the (24,1) representation, turns out to be crucial for unification. The masses of these intermediate particles can vary over a wide range, and even lie in the TeV region. In contrast, the exotic vector-like fermions must be heavy enough and have masses above 10^10 GeV. We also show that, if the SU(5)xSU(5) theory is embedded into a heterotic string scenario, it is not possible to achieve gauge coupling unification with gravity at the perturbative string scale.Comment: 17 pages, 6 figure

    Unifying gauge couplings at the string scale

    Get PDF
    Using the current precision electroweak data, we look for the minimal particle content which is necessary to add to the standard model in order to have a complete unification of gauge couplings and gravity at the weakly coupled heterotic string scale. We find that the addition of a vector-like fermion at an intermediate scale and a non-standard hypercharge normalization are in general sufficient to achieve this goal at two-loop level. Requiring the extra matter scale to be below the TeV scale, it is found that the addition of three vector-like fermion doublets with a mass around 700 GeV yields a perfect string-scale unification, provided that the affine levels are (kY,k2,k3)=(13/3,1,2)(k_Y, k_2 ,k_3)=(13/3, 1, 2) , as in the SU(5)×SU(5)SU(5) \times SU(5) string-GUT. Furthermore, if supersymmetry is broken at the unification scale, the Higgs mass is predicted in the range 125 GeV - 170 GeV, depending on the precise values of the top quark mass and tanβ\tan \beta parameter.Comment: 11 pages, 4 eps figures, using jpconf style, talk given at CORFU2005, RTN meeting ``The Quest for Unification: Theory Confronts Experiment'', 11 - 18 September 2005, Corfu, Greec

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version
    corecore