140 research outputs found

    The Potential and Challenges of Nanopore Sequencing

    Get PDF
    A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of ‘third generation’ instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.Molecular and Cellular BiologyPhysic

    Untranslated parts of genes interpreted: making heads or tails of high-throughput transcriptomic data via computational methods

    Get PDF
    The fate of eukaryotic transcripts is closely linked to their untranslated regions, which are determined by where transcription starts and ends on a genomic locus. The extent of alternative transcription start and alternative poly-adenylation has been revealed by sequencing methods focused on the ends of transcripts, but the application of these methods is not yet widely adopted by the community. In this review we highlight the importance of defining the untranslated parts of transcripts and suggest that computational methods applied to standard high-throughput technologies are a useful alternative to the expertise-demanding 5’ and 3’ sequencing. We present a number of computational approaches for the discovery and quantification of alternative transcription start and poly-adenylation events, focusing on technical challenges and arguing for the need to include better normalization of the data and more appropriate statistical models of the expected variation in the signal

    First Life: Discovering the Connections Between Stars, Cells, and How Life Began

    No full text
    This pathbreaking book explores how life can begin, taking us from cosmic clouds of stardust, to volcanoes on Earth, to the modern chemistry laboratory. Seeking to understand life’s connection to the stars, David Deamer introduces astrobiology, a new scientific discipline that studies the origin and evolution of life on Earth and relates it to the birth and death of stars, planet formation, interfaces between minerals, water, and atmosphere, and the physics and chemistry of carbon compounds. Deamer argues that life began as systems of molecules that assembled into membrane-bound packages. These in turn provided an essential compartment in which more complex molecules assumed new functions required for the origin of life and the beginning of evolution. Deamer takes us from the vivid and unpromising chaos of the Earth four billion years ago up to the present and his own laboratory, where he contemplates the prospects for generating synthetic life. Engaging and accessible, First Life describes the scientific story of astrobiology while presenting a fascinating hypothesis to explain the origin of life.https://scholar.dominican.edu/cynthia-stokes-brown-books-personal-research/1119/thumbnail.jp

    The spectre of impossibility Deluze, Japanese cinema and the atom bomb

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The Role of Lipid Membranes in Life’s Origin

    No full text
    At some point in early evolution, life became cellular. Assuming that this step was required for the origin of life, there would necessarily be a pre-existing source of amphihilic compounds capable of assembling into membranous compartments. It is possible to make informed guesses about the properties of such compounds and the conditions most conducive to their self-assembly into boundary structures. The membranes were likely to incorporate mixtures of hydrocarbon derivatives between 10 and 20 carbons in length with carboxylate or hydroxyl head groups. Such compounds can be synthesized by chemical reactions and small amounts were almost certainly present in the prebiotic environment. Membrane assembly occurs most readily in low ionic strength solutions with minimal content of salt and divalent cations, which suggests that cellular life began in fresh water pools associated with volcanic islands rather than submarine hydrothermal vents
    • …
    corecore