784 research outputs found
An automated disc infiltrometer for infiltration rate measurements using a microflowmeter
19 Pag., 1 Tabl., 4 Figs. The definitive version is available at: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1085This work presents a new design of disc infiltrometer, which, associated with a microflowmeter (MF) and a solenoid valve set, makes it possible to automate the infiltration rate (Q) measurements at different soil pressure heads (ψ). The MF consists of a 13·8-cm long and 1·5 mm i.d. pipe, with a pressure transducer connecting the two ends of the MF, inserted in a water-flow pipe that connects the Mariotte tube and the water-supply reservoir of the disc infiltrometer. Water flow is calculated from the head losses in the MF. Changes in ψ in the bubble tower, automatically affected when the infiltration rate reaches steady state, are controlled by a datalogger connected to four solenoid valves. The new design was tested in laboratory and field conditions, and the results showed that the MF allows the soil water infiltration rates to be correctly estimated for different soil characteristics. The solenoid valve set plus datalogger system satisfactorily monitored the changes in ψ and allowed the measurement time to be optimized.This research was supported by the Ministerio de Ciencia e Innovación of Spain (grants AGL2007-66320-CO2-02/AGR; 200840I214).Peer reviewe
ß-Catenin Regulation during the Cell Cycle: Implications in G2/M and Apoptosis
ß-catenin is a multifunctional protein involved in cell-cell adhesion and Wnt signal transduction. ß-Catenin signaling has been proposed to act as inducer of cell proliferation in different tumors. However, in some developmental contexts and cell systems ß-catenin also acts as a positive modulator of apoptosis. To get additional insights into the role of ß-Catenin in the regulation of the cell cycle and apoptosis, we have analyzed the levels and subcellular localization of endogenous ß-catenin and its relation with adenomatous polyposis coli (APC) during the cell cycle in S-phase¿synchronized epithelial cells. ß-Catenin levels increase in S phase, reaching maximum accumulation at late G2/M and then abruptly decreasing as the cells enter into a new G1 phase. In parallel, an increased cytoplasmic and nuclear localization of ß-catenin and APC is observed during S and G2 phases. In addition, strong colocalization of APC with centrosomes, but not ß-catenin, is detected in M phase. Interestingly, overexpression of a stable form of ß-catenin, or inhibition of endogenous ß-catenin degradation, in epidermal keratinocyte cells induces a G2 cell cycle arrest and leads to apoptosis. These results support a role for ß-catenin in the control of cell cycle and apoptosis at G2/M in normal and transformed epidermal keratinocytes
Puces à cellules et génomique fonctionnelle
À l’interface du vivant et de l’inerte, se développe un ensemble de nouvelles technologies regroupées sous le terme générique de biopuces. Grâce à la miniaturisation, nous pouvons imaginer que, demain, de nombreuses études biologiques et médicales se feront avec des biopuces qui permettront d’accroître de plusieurs ordres de grandeur le parallélisme des analyses, les vitesses de réaction des tests et leur débit, tout en réduisant les coûts. Cette évolution a démarré avec l’apparition des puces à ADN et se poursuit aujourd’hui avec, entre autres, les puces à cellules qui permettent d’accélérer considérablement l’étude des gènes de fonctions inconnues et leurs implications potentielles dans différentes maladies. Bien que la technologie en soit encore à ses prémices, il est vraisemblable que les puces à cellules feront évoluer la biologie et la médecine de manière significative.With the complete sequencing of the human genome, research priorities have shifted from the identification of genes to the elucidation of their function. Methods currently used by scientists to characterize gene function, such as knock-out mice, are based upon loss of protein function and analysis of the resulting phenotypes to infer a potential role for the protein under scrutiny. Until now, these methods have been successful but time consuming and only a few genes at a time could be analyzed. Cell microarrays allow to simultaneously transfect thousands of different nucleic acid molecules, RNA or DNA, into adherent cells. It is then possible to analyze a large pallet of resulting phenotypes in clusters of transfected cells. We are currently manufacturing cell microarrays with collections of full-length cDNA cloned in expression vectors (gain of function analyses) or siRNA (loss of function studies) to unravel function of genes involved in differentiation and proliferation of human cells. Although there are still some technological difficulties to overcome, the potential for cell microarrays to speed up functional exploration of genomes is very promising
Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust (Albugo candida)
Arabidopsis thaliana accessions are universally resistant at the adult leaf stage to white rust (Albugo candida) races that infect the crop species Brassica juncea and Brassica oleracea. We used transgressive segregation in recombinant inbred lines to test if this apparent species-wide (nonhost) resistance in A. thaliana is due to natural pyramiding of multiple Resistance (R) genes. We screened 593 inbred lines from an Arabidopsis multiparent advanced generation intercross (MAGIC) mapping population, derived from 19 resistant parental accessions, and identified two transgressive segregants that are susceptible to the pathogen. These were crossed to each MAGIC parent, and analysis of resulting F2 progeny followed by positional cloning showed that resistance to an isolate of A. candida race 2 (Ac2V) can be explained in each accession by at least one of four genes encoding nucleotide-binding, leucine-rich repeat (NLR) immune receptors. An additional gene was identified that confers resistance to an isolate of A. candida race 9 (AcBoT) that infects B. oleracea. Thus, effector-triggered immunity conferred by distinct NLR-encoding genes in multiple A. thaliana accessions provides species-wide resistance to these crop pathogens
Prevalence of potential underlying aetiology of macrocytic anaemia in Dutch general practice
Background: Macrocytic anaemia (MCV \xe2\x89\xa5 100 fL) is a relatively common finding in general practice. However, literature on the prevalence of the different causes in this population is limited. The prevalence of macrocytic anaemia and its underlying aetiology were analysed in a general practice population. The potential effect of the different aetiology on survival was also evaluated. Methods: Between the 1st of February 2007 and the 1st of February 2015, patients aged 50 years or older and presenting to their general practitioner with a newly diagnosed anaemia, were included in the study. Anaemia was defined as haemoglobin level below 13.7 g/dL in men and below 12.1 g/dL in women. A broad range of laboratory tests was performed for each patient. The causes of anaemia were consequently determined by two independent observers based on the laboratory results. Results: Of the 3324 included patients, 249 (7.5 %) displayed a macrocytic anaemia and were subsequently analysed. An underlying explanation could be established in 204 patients (81.9 %) with 27 patients (13.2 %) displaying multiple causes. Classic aetiology (i.e. alcohol abuse, vitamin B12/folic acid deficiency, haemolysis and possible bone marrow disease) was found in 115 patients. Alternative causes (i.e. anaemia of chronic disease, iron deficiency, renal anaemia and other causes) were encountered in 101 patients. In addition, a notable finding was the median gamma GT of 277 U/L in patients diagnosed with alcohol abuse (N = 24, IQR 118.0-925.5) and 23 U/L in the remaining cohort (N = 138, IQR 14.0-61.0). The distribution of gamma GT values was statistically different (P < 0.001). Five year survival rates were determined for six categories of causes, ranging from 39.9 % (95 % CI 12.9-66.9) for renal anaemia to 76.2 % (95 % CI 49.4-103.0) for the category multiple causes. Conclusion: In addition to classic explanations for macrocytosis, alternative causes are frequently encountered in patients with macrocytic anaemia in general practice
Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the International and European Society for Pediatric Oncology DIPG registries
Purpose Diffuse intrinsic pontine glioma (DIPG) is a brainstem malignancy with a median survival of < 1 year. The International and European Society for Pediatric Oncology DIPG Registries collaborated to compare clinical, radiologic, and histomolecular characteristics between short-term survivors (STSs) and long-term survivors (LTSs). Materials and Methods Data abstracted from registry databases included patients from North America, Australia, Germany, Austria, Switzerland, the Netherlands, Italy, France, the United Kingdom, and Croatia. Results Among 1,130 pediatric and young adults with radiographically confirmed DIPG, 122 (11%) were excluded. Of the 1,008 remaining patients, 101 (10%) were LTSs (survival ≥ 2 years). Median survival time was 11 months (interquartile range, 7.5 to 16 months), and 1-, 2-, 3-, 4-, and 5-year survival rates were 42.3% (95% CI, 38.1% to 44.1%), 9.6% (95% CI, 7.8% to 11.3%), 4.3% (95% CI, 3.2% to 5.8%), 3.2% (95% CI, 2.4% to 4.6%), and 2.2% (95% CI, 1.4% to 3.4%), respectively. LTSs, compared with STSs, more commonly presented at age < 3 or > 10 years (11% v 3% and 33% v 23%, respectively; P < .001) and with longer symptom duration ( P < .001). STSs, compared with LTSs, more commonly presented with cranial nerve palsy (83% v 73%, respectively; P = .008), ring enhancement (38% v 23%, respectively; P = .007), necrosis (42% v 26%, respectively; P = .009), and extrapontine extension (92% v 86%, respectively; P = .04). LTSs more commonly received systemic therapy at diagnosis (88% v 75% for STSs; P = .005). Biopsies and autopsies were performed in 299 patients (30%) and 77 patients (10%), respectively; 181 tumors (48%) were molecularly characterized. LTSs were more likely to harbor a HIST1H3B mutation (odds ratio, 1.28; 95% CI, 1.1 to 1.5; P = .002). Conclusion We report clinical, radiologic, and molecular factors that correlate with survival in children and young adults with DIPG, which are important for risk stratification in future clinical trials
Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage.
One fundamental but understudied mechanism of gene regulation in disease is allele-specific expression (ASE), the preferential expression of one allele. We leveraged RNA-sequencing data from human brain to assess ASE in autism spectrum disorder (ASD). When ASE is observed in ASD, the allele with lower population frequency (minor allele) is preferentially more highly expressed than the major allele, opposite to the canonical pattern. Importantly, genes showing ASE in ASD are enriched in those downregulated in ASD postmortem brains and in genes harboring de novo mutations in ASD. Two regions, 14q32 and 15q11, containing all known orphan C/D box small nucleolar RNAs (snoRNAs), are particularly enriched in shifts to higher minor allele expression. We demonstrate that this allele shifting enhances snoRNA-targeted splicing changes in ASD-related target genes in idiopathic ASD and 15q11-q13 duplication syndrome. Together, these results implicate allelic imbalance and dysregulation of orphan C/D box snoRNAs in ASD pathogenesis
Expanding Your Reach: Adding a Chat Service Feature to Meet Your Users Where They Are - Online!
- …
