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An automated disc infiltrometer for infiltration rate measurements using a 

microflowmeter 

 

Abstract 

This work presents a new design of disc infiltrometer, which, associated with a 

microflowmeter (MF) and a solenoid valve set, makes it possible to automate the 

infiltration rate (Q) measurements at different soil pressure heads (ψ). The MF consists 

of a 13.8-cm long and 1.5 mm i.d. pipe, with a pressure transducer connecting the two 

ends of the MF, inserted in a water-flow pipe that connects the Mariotte tube and the 

water-supply reservoir of the disc infiltrometer. Water flow is calculated from the head 

losses in the MF. Changes in ψ in the bubble tower, automatically effected when the 

infiltration rate reaches steady-state, are controlled by a datalogger connected to four 

solenoid valves. The new design was tested in laboratory and field conditions, and the 

results showed that the MF allows the soil water infiltration rates to be correctly 

estimated for different soil characteristics. The solenoid valve set plus datalogger 

system satisfactorily monitored the changes in ψ and allowed the measurement time to 

be optimized. 

 

Keywords: Disc infiltrometer; Infiltration rate, Microflowmeter 

 

1. Introduction 

Over the last two decades, the tension disc infiltrometer has become a popular tool for 

in situ measurements of soil hydraulic properties in the vadose zone. Originally, this 

instrument consisted of a base disc jointed to a graduated water-supply reservoir and a 

bubble tower to impose a negative pressure head (ψ) at the base disc (Perroux and 
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White, 1988). The soil hydraulic properties are usually calculated from infiltration rates 

at steady-state, which are calculated from the drop in water level in the water-supply 

reservoir. Cumulative soil water-infiltration curves obtained with disc infiltrometers 

were initially measured by visually noting the drop in water level in the water-supply 

reservoir. This tedious method, however, was subsequently improved by Constantz et 

al. (1987), Ankeny et al. (1988) and Casey and Derby (2002), who used pressure 

transducers to monitor drops in the water level. Similarly, Moret et al. (2004) developed 

an automated method of measuring the changes in water level in the water-supply 

reservoir by means of a long three-rod coated Time Domain Reflectometry (TDR) probe 

vertically inserted in the water-supply reservoir. However, this design, which uses a 

low-capacity water-supply reservoir, has the disadvantage that the infiltration 

measurements have to be stopped to refill the reservoir when long-term infiltration 

experiments are performed. This limitation was partially overcome by Moret-Fernández 

and González (2009), who, using an infiltrometer with the infiltration disc separated 

from a high-capacity water-supply reservoir, calculated the infiltration rates from the 

head losses in the water-flow pipe that connects the water-supply reservoir with the disc 

of the infiltrometer. However, this new method requires the water-flow pipe to be 

completely extended on the soil surface in a straight line; otherwise, additional 

undesirable pressure losses can be included.  

Recent advances in the disc infiltrometry technique have been applied to new systems 

to automate the changes in ψ in the bubble tower by incorporating a set of solenoid 

valves into a classical disc infiltrometer (Spongrova et al., 2009; Kechavarzi, et al, 

2009). However, this system, which automated changes in ψ at predetermined time 

intervals, cannot control the time at which Q reaches the steady-state.  
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The objective of this paper is to present a microflowmeter device which, associated 

with a disc infiltrometer, allows the soil water infiltration rates to be estimated. This 

new prototype incorporates a set of four solenoid valves, which, controlled by a 

datalogger, automatically changes the bubble tower ψ once the steady-state infiltration 

rate is reached. The new infiltrometer design was tested in laboratory and field 

conditions under different soil managements.  

 

2. Material and methods 

2.1. Theory 

The head losses, ΔHT (m), of an incompressible fluid moving along a circular pipe 

of length L (m) and internal diameter – i.d. – D (m) can be approached according to  

∑Δ+Δ=Δ
n

isCT HHH
1

_  (1) 

where CHΔ  and isH _Δ are the continuous and the singular head loss, respectively. 

The CHΔ  for a laminar flow along the pipe can be expressed as (Giles et al., 1994) 

4
128

D
QL

g
HC π

ν
=Δ  (2) 

where g (m s-2) is the acceleration due to gravity, Q the water flow through a circular 

pipe, and ν is the kinematic viscosity (m2 s-1) of the fluid. Eq. (2) is only applicable to 

laminar flows, in which the Reynolds number (Re) defined as 

πνD
QRe 4

=  (3) 

is lower than 2000. The kinematic viscosity as a function of the water temperature, t 

(ºC), can be described according to (r2 = 0.99) (Moret-Fernández and González, 2009)  

 68210 1078.11031.51095.6 −−− ⋅+⋅−⋅= ttν  (4) 

The singular head loss, SHΔ , (Giles et al., 1994) is expressed according to 
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 where KS is a constant depending on the pipe singularity, for which the values are 

extracted from tables (Giles et al., 1994). 

Applying Eqs. (2) and (5) to Eq. (1) in order to work out the value of Q as a function 

of ΔHT, we finally obtain  
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where KSi is the Ks value for each of the i singularities existing in the pipe. 

 

2.2. Infiltrometer design and microflowmeter 

The disc infiltrometer used in this study (Moret and Arrúe, 2005) consists of a double 

Mariotte system where the disc plus Mariotte tube, the bubble tower and the water-

supply reservoir are separated from one another (Fig. 1).  

This prototype has an independent, high-capacity water-supply reservoir that consists 

of a cylindrical tank (12.5 cm high and 15 cm in internal diameter, i.d.) joined at the 

base to a vertical tube, 30 cm long and 3.2 cm i.d., closed at the bottom. A water-flow 

pipe (50 cm long and 1 cm i.d.) connects the bottom of the water-supply reservoir with 

the base of the Mariotte tube (32 cm high and 3.37 cm i.d.), which is assembled on a 

base disc of 10 cm diameter. An air-flow pipe (80 cm long and 0.3 cm i.d.) connects the 

top of the Mariotte tube with a moveable air-entry tube that, inserted in the top of the 

water-supply reservoir, imposes the water level in the Mariotte tube. A bubble tower, 
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with four fixed air inlet tubes, supplies four different pressure heads (-10, -5, -3 and 0 

cm) to the base of the disc through a silicone pipe (80 cm long and 0.3 cm i.d.).  

The water flow is measured with a microflowmeter (MF) inserted in the water-flow 

pipe. This device consists of a tube, 13.80 cm in length and 0.15 cm in i.d., attached at 

the two ends to two tubes 5 cm in length and 1 cm in i.d. A bridge-pipe with a ±0.5 psi 

differential pressure transducer, PT, (model 26PCDFA6D, Microswitch, Honeywell) 

connects the two 5-cm-long and 1-cm-i.d. tubes 2 cm from their respective ends. The 

PT is finally connected to a datalogger (CR1000, Campbell Scientist Inc.). Under static 

conditions, the pressure head measured in the MF is constant. However, under dynamic 

conditions, the pressure measured in the MF increases with Q. 

A set of four solenoid valves were connected to the air inlet in the four tubes of the 

bubble tower. Each solenoid valve is controlled through a digital I/O port of the 

CR1000 used as a control output with the PortSet() instruction. Due to the limited drive 

capacity of the port an external relay is used to drive each valve. As the CR1000 has 8 

digital I/O ports it can control up to 8 valves. 

The changes in ψ in the bubble tower, effected when Q reaches steady-state, are 

controlled by a datalogger program that switches the solenoid valves. The water flow is 

considered to be in steady-state when the changes in pressure measured by the PT at 

pre-fixed intervals of time, generally 5 seconds, are lower than 0.05 cm a defined 

number of times (10 to 4 scans typically).  

The water temperature during the infiltration experiments is measured with a 

thermocouple sensor which, connected to the datalogger, is inserted in the water-flow 

pipe just before the MF.   

 

2.3. Microflowmeter calibration 
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A first laboratory experiment was performed to calibrate the microflowmeter method 

for Q estimations. The experimental design consisted of a Mariotte water-supply 

reservoir (clear plastic tube 75 cm in height and 3.7 cm in i.d.) connected, through a 3 

mm i.d. pipe, to a MF that poured the water at atmospheric pressure. The reservoir had a 

±1 psi PT (model 26PCDFA6D, Microswitch, Honeywell) inserted at the bottom (Casey 

and Derby, 2002). A microflowmeter of 13.80 cm length and 0.15 cm i.d. was first 

calibrated. The air inlet in the Mariotte water-supply reservoir comprised a silicone pipe 

(3 mm i.d. and 80 cm length) inserted 3 cm above the water outlet tube in the Mariotte 

tube, and connected to a bubble tower that supplied four different tensions (-10, -5, -3 

and 0 cm). The KS values for the singular head loss (ΔHS) of the MF ranged between 0.3 

and 1 (Giles et al., 1994). 

A total of twenty-four different Q (from 0.23 to 2.73 L h-1), monitored from the drop 

in water level in the water-supply reservoir, were used to calibrate the MF. For a single 

opening of the water outlet pipe, four different Q were obtained as a function of the 

tension supplied by the bubble tower. The tension was automatically controlled by the 

solenoid valve set plus datalogger, as described above. The changes in ψ were activated 

when the differences in the average pressure measured by the PT of the MF were lower 

than 0.05 cm during ten time intervals. The scanning time interval of the datalogger was 

5 seconds. The water temperature was measured with a thermocouple installed in the 

water-flow pipe just before the MF (Fig. 2). This same experiment was repeated using 

an MF 5.70 cm long and 0.15 cm in i.d.  

 

2.4. Infiltration measurements 

A series of infiltration measurements in soil column and field experiments were 

conducted to verify the viability of the MF for infiltration rate measurements and the 
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solenoid valve set system for automating the tension change. To this end, a modified 

Fig. 1 infiltrometer design, which used a clear plastic tube water-supply reservoir (75 

cm height and 3.7 cm i.d.), was used. The Q measured from the drop in water level in 

the water-supply reservoir was compared with the corresponding Q measured with a 

MF of 13.8 cm length and 0.15 cm i.d.  

Two measurements were made in a laboratory using a 2-mm sieved loam soil. In the 

field, infiltration was measured twice on five different soils (Table 1). The soil dry bulk 

density (ρb) and the prior volumetric water content of the soil were determined by the 

core method (core dimensions of 50 mm diameter and 50 mm height). All the 

infiltration measurements were performed on the soil surface after removing the surface 

soil crust. The base disc of the infiltrometer was covered with a nylon cloth of 20-μm 

mesh, and a thin layer of commercial sand was used to ensure good contact between the 

disc and the soil. The initial pressure head of the MF, needed to calculate ΔHT, was 

recorded when no water flow was observed through the water-flow pipe. Four different 

ψ (-10, -5, -3 and 0 cm) were used, and only infiltration measurements during the 

steady-state water flow were considered. The scanning time interval of the PT 

measurement for both the water-supply reservoir and the MF was 5 seconds. The ψ of 

the bubble tower changed automatically when the variation in pressure measured in the 

MF during ten intervals of time was lower than 0.05 cm. The water temperature was 

also recorded as described above.  

 

3. Results and discussion 

The effective i.d. of the 5.7- and 13.8-cm long MF estimated from the laboratory 

calibration experiment were 0.156 and 0.155 cm, respectively. The Reynolds number 

(Eq. 3) calculated for the different Q and the two different MF used in the laboratory 
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and field experiments was always lower than 2000, which indicates that the Q in the MF 

always had a laminar flow.  

The excellent correlation observed in the laboratory experiment (where no soils were 

used) between the Q measured from the drop in water level in the water-supply 

reservoir and the corresponding values calculated from the 13.8 cm (y = 1.004x; r2 = 

0.997; RMSE = 0.066 ; SD = 0.013) and 5.7 cm (y = 0.977; r2 = 0.989; RMSE = 0.066 ; 

SD = 0.015) long MF (Eq. 6) demonstrates that the MF can be a reliable method for 

infiltration rate measurements using the disc infiltrometry technique. For each particular 

pressure head, the Q (l h-1) calculated from the water level drop corresponded to the 

regression line slope for the last steps of the cumulative water flow curve. For the MF 

method, the Q value was calculated from the average pressure head losses recorded in 

the same time interval. 

The good temporal correspondence between the linear correlation of the drop in water 

level measured in the water-supply reservoir and the flat section of the pressure head in 

the MF obtained in the calibration experiment (Fig. 2a) indicates that the solenoid valve 

set plus datalogger system can efficiently detect the time when the infiltration rate 

reaches steady-state, and consequently activate the mechanism to automatically change 

the ψ of the bubble tower.  

The comparison between the instantaneous water flow rates (l h-1) estimated with the 

MF and those values calculated from the drop in water level in the laboratory 

experiments shows that Q values measured with MF are significantly more stable than 

the corresponding values calculated by the water reservoir method (Fig. 2a). These 

discrepancies are due to the fact that Q obtained from the drop in water level is 

calculated from the derivative of the cumulative water flow curve, which increases the 

sensitivity of Q. The large dispersion of water flow rates measured in the field 
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experiments from the drop in water reservoir level prevented these measurements from 

being plotted in Figure 2b. 

The excellent correlation (RMSE = 0.013 L h-1) observed in the soil column and field 

measurements between the Q obtained from the drop in water level in the water-supply 

reservoir and the values calculated with the 13.8-cm-long MF (Eq. 6) (Fig. 3) 

demonstrates that this new method is accurate enough to estimate infiltration rates for a 

large range of soil characteristics (Table 1). The percentage difference between the Q 

estimated from the water-supply reservoir and the values calculated with the MF 

increases as the water flow through the MF decreases (Fig. 4). This disagreement, 

which could discredit the MF method, should not only be attributed to limitations in the 

MF at low Q, but also to errors made in the calculation of the infiltration rate from the 

drop in the reservoir water level (i.e. Fig. 2a). This limitation, however, could be 

overcome by lengthening the scanning time interval of the drop in reservoir water level 

or by increasing the infiltration rates using infiltrometers with a higher disc diameter.  

As observed in the laboratory and field experiments, the solenoid valve set plus 

datalogger and disc infiltrometer system can satisfactorily identify the time when the 

infiltration rate reaches steady-state by analysing the flat sections of the pressure curve 

measured with the MF. Once this time has been detected, the system can automatically 

change the ψ of the bubble tower (Fig. 2).  

 

4. Conclusions 

This paper presents a microflowmeter (MF) device which, associated with a disc 

infiltrometer and a set of solenoid valves, makes it possible to automate the estimation 

of the soil water infiltration rates at different ψ. The laboratory and field experiments 

have shown that the method can be a viable alternative for measuring infiltration rates 



 12

with disc infiltrometers. In comparison to the classic Perroux and White (1988) 

prototype, the method proposed here allows a high-capacity water-supply reservoir to be 

used and the instantaneous soil water infiltration rate to be determined. Compared to the 

Moret-Fernández and González (2009) prototype, the MF method allows: 

1. Use of a water-flow pipe that should not be completely extended in a straight 

line on the soil surface. 

2. Measurements of the water temperature just before the MF, which allows more 

accurate calculations of Q. Further, in situ measurement of water temperature 

is important to field experiments, since water temperature also affects the 

water movement into the soil.  

3. The solenoid valve set plus datalogger system allows the changes in ψ in the 

bubble tower to be automated and reduces the measurement time. Additional 

pressure heads can be measured by incorporating new solenoids valves. 

4. Elimination of interference in the water level measurements caused by 

bubbling inside the water-supply reservoir. 

However, compared to the Perroux and White (1988) disc infiltrometer, which is 

widely used because of its simplicity and ease of use, the design presented here, which 

has more tubes and cables, may introduce some difficulties for use in the field.  
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Figures captions 

 

Figure 1. Diagram of the new disc infiltrometer design. 

 

Figure 2. Cumulative water flow (cm3) - - and water flow rate (l h-1) - - measured 

from the drop in water level in the water-supply reservoir and the water flow rate 

measured with the 13.8-cm long and 1.5-mm i.d. microflowmeter -    - at four 

different pressure heads (ψ) (a) in a laboratory calibration experiment, and (b) on 

a loosened soil after a pass with a mouldboard and a land-roller.  

 

Figure 3. Relationship between the water-flow values measured from the drop in water 

level in the water-supply reservoir and those calculated by the microflowmeter of 

13.8-cm length for all the soil columns and field measurements. 

 

Figure 4. Relationship between the water flows measured with the water reservoir 

supply (QWSR) and the percentage difference between the water flow measured by 

the water reservoir and the corresponding value estimated by the microflowmeter 

(QMF) in the field experiments. 
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Table 1.  Description, texture, dry bulk density (ρb) and initial volumetric water content (θi) of the different soils used to test the 14-cm-

long microflowmeter for infiltration rate measurements with the disc infiltrometer at -10, -5, -3 and 0 cm pressure heads. 

 

Soil   Observation Replications Texture ρb θi 
     (g cm-3) (cm cm-3) 
           

LSS  Loam 2 mm sieved soil  2 Loam 1.25 0.03 
COF  Compacted soil on olive field 2 Loam 1.46 0.17 
CAF  Compacted soil on apple tree field 2 Silt loam 1.53 0.20 
LR  Loosened soil after a pass with a rotatiller  2 Loam 1.38 0.19 
LM  Loosened soil after a pass with a mouldboard and a land-roller  2 Loam 1.23 0.19 
SSB  Sandy soil from a seedbed 2 Sand 1.25 0.13 
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Figure 1. 
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Figure 2. 

 

Time (s)

0 200 400 600 800 1000

C
um

ul
at

iv
e 

w
at

er
 fl

ow
 (c

m
3 )

0

50

100

150

200

250

300

W
at

er
 fl

ow
 ra

te
 (l

 h
-1

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a
ψ = -5 cm ψ = -3 cm ψ = 0 cmψ = -10 cm

Time (s)

0 100 200 300 400 500 600

C
um

ul
at

iv
e 

w
at

er
 in

fil
tr

at
io

n 
(c

m
3 )

0

20

40

60

80

W
at

er
 in

fil
tr

at
io

n 
ra

te
 (l

 h
-1

)

0.0

0.2

0.4

0.6

0.8

b
ψ = -5 cm ψ = -3 cm ψ = 0 cmψ = -10 cm

 

 

 



 18

 

Figure 3. 
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Figure 4. 
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