61 research outputs found

    Thermal interaction between back-arc volcanism and basin sediments in the Bransfield Strait, Antarctica

    Get PDF

    Age characteristics of a shelf-break eddy in the western Arctic and implications for shelf-basin exchange

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C02018, doi:10.1029/2007JC004429.Radioisotope evaluation of a cold-core, anticyclonic eddy surveyed in September 2004 on the Chukchi Sea continental slope was used to determine its age since formation over the shelf environment. Because the eddy can be shown to have been generated near the shelf break, initial conditions for several age-dependent tracers could be relatively well constrained. A combination of 228Ra/226Ra, excess 224Ra, and 228Th/228Ra suggested an age on the order of months. This age is consistent with the presence of elevated concentrations of nutrients, organic carbon, suspended particles, and shelf-derived neritic zooplankton within the eddy compared to ambient offshore water in the Canada Basin but comparable to values measured in the Chukchi shelf and shelf-break environment. Hence this feature, at the edge of the deep basin, was poised to deliver biogeochemically significant shelf material to the central Arctic Ocean.This work was supported by National Science Foundation Polar Programs grants OPP-662690 and OPP-66040N to the University of Miami (DK), and Office of Naval Research grant N00014-02-1-0317 (RP)

    Shelf-basin interactions and water mass residence times in the western Arctic Ocean: Insights provided by radium isotopes

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(5), (2019): 3279-3297, doi: 10.1029/2019JC014988.Radium isotopes are produced through the decay of thorium in sediments and are soluble in seawater; thus, they are useful for tracing ocean boundary‐derived inputs to the ocean. Here we apply radium isotopes to study continental inputs and water residence times in the Arctic Ocean, where land‐ocean interactions are currently changing in response to rising air and sea temperatures. We present the distributions of radium isotopes measured on the 2015 U.S. GEOTRACES transect in the Western Arctic Ocean and combine this data set with historical radium observations in the Chukchi Sea and Canada Basin. The highest activities of radium‐228 were observed in the Transpolar Drift and the Chukchi shelfbreak jet, signaling that these currents are heavily influenced by interactions with shelf sediments. The ventilation of the halocline with respect to inputs from the Chukchi shelf occurs on time scales of ≀19–23 years. Intermediate water ventilation time scales for the Makarov and Canada Basins were determined to be ~20 and >30 years, respectively, while deep water residence times in these basins were on the order of centuries. The radium distributions and residence times described in this study serve as a baseline for future studies investigating the impacts of climate change on the Arctic Ocean.We thank the captain and crew of the USCGC Healy (HLY1502) and the chief scientists D. Kadko and W. Landing for coordinating a safe and successful expedition. We thank the members of the pump team, P. Lam, E. Black, S. Pike, X. Yang, and M. Heller for their assistance with sample collection and for their unfailingly positive attitudes during this 65‐day expedition. We also appreciate sampling assistance from P. Aguilar and M. Stephens, and MATLAB assistance from B. Corlett, A. Pacini, P. Lin, and M. Li. The radium data from the HLY1502 expedition are available through the Biological & Chemical Oceanography Data Management Office (https://www.bco‐dmo.org/dataset/718440) and the radium measurements from the SHEBA, AWS‐2000, and SBI expeditions can be found in the supporting information. This work was funded by NSF awards OCE‐1458305 to M.A.C., OCE‐1458424 to W.S.M., and PLR‐1504333 to R.S.P. This research was conducted with Government support under and awarded by a DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship awarded to L.E.K., 32 CFR 168a.2019-10-2

    Meridional Survey of the Central Pacific Reveals Iodide Accumulation in Equatorial Surface Waters and Benthic Sources in the Abyssal Plain

    Get PDF
    The distributions of iodate and iodide were measured along the GEOTRACES GP15 meridional transect at 152°W from the shelf of Alaska to Papeete, Tahiti. The transect included oxygenated waters near the shelf of Alaska, the full water column in the central basin in the North Pacific Basin, the upper water column spanning across seasonally mixed regimes in the north, oligotrophic regimes in the central gyre, and the equatorial upwelling. Iodide concentrations are highest in the permanently stratified tropical mixed layers, which reflect accumulation due to light-dependent biological processes, and decline rapidly below the euphotic zone. Vertical mixing coefficients (Kz), derived from complementary 7Be data, enabled iodide oxidation rates to be estimated at two stations. Iodide half-lives of 3–4 years show the importance of seasonal mixing processes in explaining north-south differences in the transect, and also contribute to the decrease in iodide concentrations with depth below the mixed layer. These estimated half-lives are consistent with a recent global iodine model. No evidence was found for significant inputs of iodine from the Alaskan continental margin, but there is a significant enrichment of iodide in bottom waters overlying deep sea sediments from the interior of the basin

    Observational and modeling evidence of seasonal trends in sediment-derived material inputs to the Chukchi Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC016007, doi:10.1029/2019JC016007.Benthic inputs of nutrients help support primary production in the Chukchi Sea and produce nutrient‐rich water masses that ventilate the halocline of the western Arctic Ocean. However, the complex biological and redox cycling of nutrients and trace metals make it difficult to directly monitor their benthic fluxes. In this study, we use radium‐228, which is a soluble radionuclide produced in sediments, and a numerical model of an inert, generic sediment‐derived tracer to study variability in sediment inputs to the Chukchi Sea. The 228Ra observations and modeling results are in general agreement and provide evidence of strong benthic inputs to the southern Chukchi Sea during the winter, while the northern shelf receives higher concentrations of sediment‐sourced materials in the spring and summer due to continued sediment‐water exchange as the water mass traverses the shelf. The highest tracer concentrations are observed near the shelfbreak and southeast of Hanna Shoal, a region known for high biological productivity and enhanced benthic biomass.This study presents data from multiple Arctic expeditions over the past two decades, and we are indebted to the captains, crews, and scientific parties that made this data collection possible. This work was funded by NSF awards OCE‐1458305 to M. Charette, OCE‐1458424 to W. Moore, OCE‐1434085 to D. Kadko, PLR‐1504333 to R. Pickart, and OPP‐1822334 to M. Spall. Funding was also provided by National Oceanic and Atmospheric Administration Grant NA14‐OAR4320158 to R. Pickart. L. Kipp was supported by an Ocean Frontier Institute Postdoctoral Fellowship. Radium data used in this manuscript are available in Table S1.2020-10-2

    Eddy transport of organic carbon and nutrients from the Chukchi Shelf : impact on the upper halocline of the western Arctic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C05011, doi:10.1029/2006JC003899.In September 2004 a detailed physical and chemical survey was conducted on an anticyclonic, cold-core eddy located seaward of the Chukchi Shelf in the western Arctic Ocean. The eddy had a diameter of ∌16 km and was centered at a depth of ∌160 m between the 1000 and 1500 m isobaths over the continental slope. The water in the core of the eddy (total volume of 25 km3) was of Pacific origin, and contained elevated concentrations of nutrients, organic carbon, and suspended particles. The feature, which likely formed from the boundary current along the edge of the Chukchi Shelf, provides a mechanism for transport of carbon, oxygen, and nutrients directly into the upper halocline of the Canada Basin. Nutrient concentrations in the eddy core were elevated compared to waters of similar density in the deep Canada Basin: silicate (+20 ÎŒmol L−1), nitrate (+5 ÎŒmol L−1), and phosphate (+0.4 ÎŒmol L−1). Organic carbon in the eddy core was also elevated: POC (+3.8 ÎŒmol L−1) and DOC (+11 ÎŒmol L−1). From these observations, the eddy contained 1.25 × 109 moles Si, 4.5 × 108 moles NO3 −, 5.5 × 107 moles PO3 −, 1.2 × 108 moles POC, and 1.9 × 109 moles DOC, all available for transport to the interior of the Canada Basin. This suggests that such eddies likely play a significant role in maintaining the nutrient maxima observed in the upper halocline. Assuming that shelf-to-basin eddy transport is the dominant renewal mechanism for waters of the upper halocline, remineralization of the excess organic carbon transported into the interior would consume 6.70 × 1010 moles of O2, or one half the total oxygen consumption anticipated arising from all export processes impacting the upper halocline.This work was supported by the National Science Foundation, and office of Naval Research; DH OPP-0124900, NB OPP-0124868, DK OPP 0124872, RP N00014-02-1-0317

    Sulfide geochronology along the Endeavour Segment of the Juan de Fuca Ridge

    Get PDF
    Forty-nine hydrothermal sulfide-sulfate rock samples from the Endeavour Segment of the Juan de Fuca Ridge, northeastern Pacific Ocean, were dated by measuring the decay of 226Ra (half-life of 1600 years) in hydrothermal barite to provide a history of hydrothermal venting at the site over the past 6000 years. This dating method is effective for samples ranging in age from ∌200 to 20,000 years old and effectively bridges an age gap between shorter- and longer-lived U-series dating techniques for hydrothermal deposits. Results show that hydrothermal venting at the active High Rise, Sasquatch, and Main Endeavour fields began at least 850, 1450, and 2300 years ago, respectively. Barite ages of other inactive deposits on the axial valley floor are between ∌1200 and ∌2200 years old, indicating past widespread hydrothermal venting outside of the currently active vent fields. Samples from the half-graben on the eastern slope of the axial valley range in age from ∌1700 to ∌2925 years, and a single sample from outside the axial valley, near the westernmost valley fault scarp is ∌5850 ± 205 years old. The spatial relationship between hydrothermal venting and normal faulting suggests a temporal relationship, with progressive younging of sulfide deposits from the edges of the axial valley toward the center of the rift. These relationships are consistent with the inward migration of normal faulting toward the center of the valley over time and a minimum age of onset of hydrothermal activity in this region of 5850 years

    Radiogenic isotopes: Tracers of past ocean circulation and erosional input

    Get PDF
    The radiogenic isotope composition of dissolved trace metals in the ocean represents a set of relatively new and not yet fully exploited tracers with a large potential for oceanographic and paleoceanographic research on timescales from the present back to at least 60 Ma. The main topic of this review are those trace metals with oceanic residence times on the order of or shorter than the global mixing time of the ocean (Nd, Pb, Hf, and, in addition, Be). Their isotopic composition in the ocean has varied as a function of changes in paleocirculation, source provenances, style and intensity of weathering on the continents, as well as orogenic processes. The relative importance of these processes for each trace metal is evaluated, which is a prerequisite for reliable interpretation of their time series in terms of changes in paleocirculation or weathering inputs. This analysis of processes includes a discussion of the long-term isotopic evolution of Sr and Os, which are well mixed in the ocean and have thus not been influenced by circulation changes. The radiogenic isotope evolution of those trace metals with intermediate oceanic residence times can be used as paleoceanographic proxies to reconstruct paleocirculation and weathering inputs into the ocean. This is demonstrated by studies from different ocean basins, mainly carried out on ferromanganese crusts, which show that radiogenic trace metal isotopes provide important new insights and can complement results obtained by other well-established paleoceanographic tracers such as carbon isotopes
    • 

    corecore