171 research outputs found

    Nine years of experimental warming did not influence the thermal sensitivity of metabolic rate in the medaka fish Oryzias latipes

    Get PDF
    A pressing challenge is to determine whether and how global-change drivers influence species physiology and survival. Recently, researchers have proposed the metabolic theory of ecology, defending the hypothesis of a universal thermal dependence of metabolic rate or, alternatively, the metabolic cold adaptation theory, stating that local adaptation can influence the thermal sensitivity of metabolic rate. However, the long-term (i.e. multigenerational) consequences of warming for the thermal sensitivity of metabolic rate remain largely unexplored although it determines energy use and is crucial for species response to climate change. In this study, we used an evolutionary experiment with medaka fishes Oryzias latipes maintained for more than 12 generations at warm and cold temperatures (30 and 20°C, respectively) to address this issue. Our objective was to investigate whether thermal adaptation influences the relationship between temperature and mass-corrected metabolic rate and how this may occur. In agreement with the universal thermal dependence hypothesis, we found that warming did not significantly influence the thermal sensitivity of mass-corrected metabolic rate: neither the intercept nor the slope of the temperature–metabolic rate relationship differed among fish lineages. Our small-scale laboratory experiment thus indicated that there is limited potential for evolutionary change in medaka fish metabolic rate in response to warmer temperatures. Overall, we provide evidence that 9 years of experimental warming did not influence the thermal sensitivity of metabolic rate. Our results highlight the invariability of the thermal dependence of metabolic rate, which has important implications for adaptation to climate warming. This finding suggests a limited potential for metabolic adaptations in response to long-term temperature changes, which may have negative consequences for the persistence of fish populations under climate change

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns

    Phytoplankton Cell Size Reduction in Response to Warming Mediated by Nutrient Limitation

    Get PDF
    Shrinking of body size has been proposed as one of the universal responses of organisms to global climate warming. Using phytoplankton as an experimental model system has supported the negative effect of warming on body-size, but it remains controversial whether the size reduction under increasing temperatures is a direct temperature effect or an indirect effect mediated over changes in size selective grazing or enhanced nutrient limitation which should favor smaller cell-sizes. Here we present an experiment with a factorial combination of temperature and nutrient stress which shows that most of the temperature effects on phytoplankton cell size are mediated via nutrient stress. This was found both for community mean cell size and for the cell sizes of most species analyzed. At the highest level of nutrient stress, community mean cell size decreased by 46% per degrees C, while it decreased only by 4.7% at the lowest level of nutrient stress. Individual species showed qualitatively the same trend, but shrinkage per degrees C was smaller. Overall, our results support the hypothesis that temperature effects on cell size are to a great extent mediated by nutrient limitation. This effect is expected to be exacerbated under field conditions, where higher temperatures of the surface waters reduce the vertical nutrient transport

    Mechanistic origins of variability in phytoplankton dynamics. Part II: analysis of mesocosm blooms under climate change scenarios

    Get PDF
    Driving factors of phytoplankton spring blooms have been discussed since long, but rarely analyzed quantitatively. Here, we use a mechanistic size-based ecosystem model to reconstruct observations made during the Kiel mesocosm experiments (2005–2006). The model accurately hindcasts highly variable bloom developments including community shifts in cell size. Under low light, phytoplankton dynamics was mostly controlled by selective mesozooplankton grazing. Selective grazing also explains initial dominance of large diatoms under high light conditions. All blooms were mainly terminated by aggregation and sedimentation. Allometries in nutrient uptake capabilities led to a delayed, post-bloom dominance of small species. In general, biomass and trait dynamics revealed many mutual dependencies, while growth factors decoupled from the respective selective forces. A size shift induced by one factor often changed the growth dependency on other factors. Within climate change scenarios, these indirect effects produced large sensitivities of ecosystem fluxes to the size distribution of winter phytoplankton. These sensitivities exceeded those found for changes in vertical mixing, whereas temperature changes only had minimal impacts

    Sinking Jelly-Carbon Unveils Potential Environmental Variability along a Continental Margin

    Get PDF
    Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m2 after trawling and integrating between 30,000 and 175,000 m2 of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems

    A Tale of Four Stories: Soil Ecology, Theory, Evolution and the Publication System

    Get PDF
    International audienceBACKGROUND: Soil ecology has produced a huge corpus of results on relations between soil organisms, ecosystem processes controlled by these organisms and links between belowground and aboveground processes. However, some soil scientists think that soil ecology is short of modelling and evolutionary approaches and has developed too independently from general ecology. We have tested quantitatively these hypotheses through a bibliographic study (about 23000 articles) comparing soil ecology journals, generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. FINDINGS: We have shown that soil ecology is not well represented in generalist ecology journals and that soil ecologists poorly use modelling and evolutionary approaches. Moreover, the articles published by a typical soil ecology journal (Soil Biology and Biochemistry) are cited by and cite low percentages of articles published in generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. CONCLUSION: This confirms our hypotheses and suggests that soil ecology would benefit from an effort towards modelling and evolutionary approaches. This effort should promote the building of a general conceptual framework for soil ecology and bridges between soil ecology and general ecology. We give some historical reasons for the parsimonious use of modelling and evolutionary approaches by soil ecologists. We finally suggest that a publication system that classifies journals according to their Impact Factors and their level of generality is probably inadequate to integrate "particularity" (empirical observations) and "generality" (general theories), which is the goal of all natural sciences. Such a system might also be particularly detrimental to the development of a science such as ecology that is intrinsically multidisciplinary

    Predicting River Macroinvertebrate Communities Distributional Shifts under Future Global Change Scenarios in the Spanish Mediterranean Area

    Get PDF
    Several studies on global change over the next century predict increases in mean air temperatures of between 1°C to 5°C that would affect not only water temperature but also river flow. Climate is the predominant environmental driver of thermal and flow regimes of freshwater ecosystems, determining survival, growth, metabolism, phenology and behaviour as well as biotic interactions of aquatic fauna. Thus, these changes would also have consequences for species phenology, their distribution range, and the composition and dynamics of communities. These effects are expected to be especially severe in the Mediterranean basin due its particular climate conditions, seriously threatening Southern European ecosystems. In addition, species with restricted distributions and narrow ecological requirements, such as those living in the headwaters of rivers, will be severely affected. The study area corresponds to the Spanish Mediterranean and Balearic Islands, delimited by the Köppen climate boundary. With the application of the MEDPACS (MEDiterranean Prediction And Classification System) predictive approach, the macroinvertebrate community was predicted for current conditions and compared with three posible scenarios of watertemperature increase and its associated water flow reductions. The results indicate that the aquatic macroinvertebrate communities will undergo a drastic impact, with reductions in taxa richness for each scenario in relation to simulated current conditions, accompanied by changes in the taxa distribution pattern. Accordingly, the distribution area of most of the taxa (65.96%) inhabiting the mid-high elevations would contract and rise in altitude. Thus, families containing a great number of generalist species will move upstream to colonize new zones with lower water temperatures. By contrast, more vulnerable taxa will undergo reductions in their distribution area.This work was funded by GUADALMED-II (REN2001-3438-C07-06/HID), a project of excellence from “Junta de Andalucía” (RNM-02654/FEDER), the Spanish “Ministerio de Ciencia e Innovación” (CGL2007-61856/BOS), projects and a collaboration agreement between the “Spanish Ministerio de Medio Ambiente, Medio Rural y Marino” and the University of Granada (21.812-0062/8511)

    The response of temperate aquatic ecosystems to global warming: novel insights from a multidisciplinary project

    Get PDF
    This article serves as an introduction to this special issue of Marine Biology, but also as a review of the key findings of the AQUASHIFT research program which is the source of the articles published in this issue. AQUASHIFT is an interdisciplinary research program targeted to analyze the response of temperate zone aquatic ecosystems (both marine and freshwater) to global warming. The main conclusions of AQUASHIFT relate to (a) shifts in geographic distribution, (b) shifts in seasonality, (c) temporal mismatch in food chains, (d) biomass responses to warming, (e) responses of body size, (f) harmful bloom intensity, (f), changes of biodiversity, and (g) the dependence of shifts to temperature changes during critical seasonal windows

    Achieving temperature-size changes in a unicellular organism.

    Get PDF
    The temperature-size rule (TSR) is an intraspecific phenomenon describing the phenotypic plastic response of an organism size to the temperature: individuals reared at cooler temperatures mature to be larger adults than those reared at warmer temperatures. The TSR is ubiquitous, affecting >80% species including uni- and multicellular groups. How the TSR is established has received attention in multicellular organisms, but not in unicells. Further, conceptual models suggest the mechanism of size change to be different in these two groups. Here, we test these theories using the protist Cyclidium glaucoma. We measure cell sizes, along with population growth during temperature acclimation, to determine how and when the temperature-size changes are achieved. We show that mother and daughter sizes become temporarily decoupled from the ratio 2:1 during acclimation, but these return to their coupled state (where daughter cells are half the size of the mother cell) once acclimated. Thermal acclimation is rapid, being completed within approximately a single generation. Further, we examine the impact of increased temperatures on carrying capacity and total biomass, to investigate potential adaptive strategies of size change. We demonstrate no temperature effect on carrying capacity, but maximum supported biomass to decrease with increasing temperature
    corecore