105 research outputs found
Slice Stretching Effects for Maximal Slicing of a Schwarzschild Black Hole
Slice stretching effects such as slice sucking and slice wrapping arise when
foliating the extended Schwarzschild spacetime with maximal slices. For
arbitrary spatial coordinates these effects can be quantified in the context of
boundary conditions where the lapse arises as a linear combination of odd and
even lapse. Favorable boundary conditions are then derived which make the
overall slice stretching occur late in numerical simulations. Allowing the
lapse to become negative, this requirement leads to lapse functions which
approach at late times the odd lapse corresponding to the static Schwarzschild
metric. Demanding in addition that a numerically favorable lapse remains
non-negative, as result the average of odd and even lapse is obtained. At late
times the lapse with zero gradient at the puncture arising for the puncture
evolution is precisely of this form. Finally, analytic arguments are given on
how slice stretching effects can be avoided. Here the excision technique and
the working mechanism of the shift function are studied in detail.Comment: 16 pages, 4 figures, revised version including a study on how slice
stretching can be avoided by using excision and/or shift
Evolution of 3D Boson Stars with Waveform Extraction
Numerical results from a study of boson stars under nonspherical
perturbations using a fully general relativistic 3D code are presented together
with the analysis of emitted gravitational radiation. We have constructed a
simulation code suitable for the study of scalar fields in space-times of
general symmetry by bringing together components for addressing the initial
value problem, the full evolution system and the detection and analysis of
gravitational waves. Within a series of numerical simulations, we explicitly
extract the Zerilli and Newman-Penrose scalar gravitational waveforms
when the stars are subjected to different types of perturbations. Boson star
systems have rapidly decaying nonradial quasinormal modes and thus the complete
gravitational waveform could be extracted for all configurations studied. The
gravitational waves emitted from stable, critical, and unstable boson star
configurations are analyzed and the numerically observed quasinormal mode
frequencies are compared with known linear perturbation results. The
superposition of the high frequency nonspherical modes on the lower frequency
spherical modes was observed in the metric oscillations when perturbations with
radial and nonradial components were applied. The collapse of unstable boson
stars to black holes was simulated. The apparent horizons were observed to be
slightly nonspherical when initially detected and became spherical as the
system evolved. The application of nonradial perturbations proportional to
spherical harmonics is observed not to affect the collapse time. An unstable
star subjected to a large perturbation was observed to migrate to a stable
configuration.Comment: 26 pages, 12 figure
Cyber-infrastructure to Support Science and Data Management for the Dark Energy Survey
The Dark Energy Survey (DES; operations 2009-2015) will address the nature of
dark energy using four independent and complementary techniques: (1) a galaxy
cluster survey over 4000 deg2 in collaboration with the South Pole Telescope
Sunyaev-Zel'dovich effect mapping experiment, (2) a cosmic shear measurement
over 5000 deg2, (3) a galaxy angular clustering measurement within redshift
shells to redshift=1.35, and (4) distance measurements to 1900 supernovae Ia.
The DES will produce 200 TB of raw data in four bands, These data will be
processed into science ready images and catalogs and co-added into deeper,
higher quality images and catalogs. In total, the DES dataset will exceed 1 PB,
including a 100 TB catalog database that will serve as a key science analysis
tool for the astronomy/cosmology community. The data rate, volume, and duration
of the survey require a new type of data management (DM) system that (1) offers
a high degree of automation and robustness and (2) leverages the existing high
performance computing infrastructure to meet the project's DM targets. The DES
DM system consists of (1) a grid-enabled, flexible and scalable middleware
developed at NCSA for the broader scientific community, (2) astronomy modules
that build upon community software, and (3) a DES archive to support automated
processing and to serve DES catalogs and images to the collaboration and the
public. In the recent DES Data Challenge 1 we deployed and tested the first
version of the DES DM system, successfully reducing 700 GB of raw simulated
images into 5 TB of reduced data products and cataloguing 50 million objects
with calibrated astrometry and photometry.Comment: 12 pages, 3 color figures, 1 table. Published in SPIE vol. 627
Space charge in drift chambers operated with the Xe,CO2(15%) mixture
Using prototype modules of the ALICE Transition Radiation Detector we
investigate space charge effects and the dependence of the pion rejection
performance on the incident angle of the ionizing particle. The average pulse
height distributions in the drift chambers operated with the Xe,CO2(15%)
mixture provide quantitative information on the gas gain reduction due to space
charge accumulating during the drift of the primary ionization. Our results
demonstrate that the pion rejection performance of a TRD is better for tracks
which are not at normal incidence to the anode wires. We present detailed
simulations of detector signals, which reproduce the measurements and lend
strong support to our interpretation of the measurements in terms of space
charge effects.Comment: 18 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
A. Data files available at http://www-alice.gsi.de/tr
Energy loss of pions and electrons of 1 to 6 GeV/c in drift chambers operated with Xe,CO2(15%)
We present measurements of the energy loss of pions and electrons in drift
chambers operated with a Xe,CO2(15%) mixture. The measurements are carried out
for particle momenta from 1 to 6 GeV/c using prototype drift chambers for the
ALICE TRD. Microscopic calculations are performed using input parameters
calculated with GEANT3. These calculations reproduce well the measured average
and most probable values for pions, but a higher Fermi plateau is required in
order to reproduce our electron data. The widths of the measured distributions
are smaller for data compared to the calculations. The electron/pion
identification performance using the energy loss is also presented.Comment: 15 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
The HADES Tracking System
The tracking system of the dielectron spectrometer HADES at GSI Darmstadt is
formed out of 24 low-mass, trapezoidal multi-layer drift chambers providing in
total about 30 square meter of active area. Low multiple scattering in the in
total four planes of drift chambers before and after the magnetic field is
ensured by using helium-based gas mixtures and aluminum cathode and field
wires. First in-beam performance results are contrasted with expectations from
simulations. Emphasis is placed on the energy loss information, exploring its
relevance regarding track recognition.Comment: 6 pages, 4 figures, presented at the 10th Vienna Conference on
Instrumentation, Vienna, February 2004, to be published in NIM A (special
issue
Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)
We present measurements of position and angular resolution of drift chambers
operated with a Xe,CO(15%) mixture. The results are compared to Monte Carlo
simulations and important systematic effects, in particular the dispersive
nature of the absorption of transition radiation and non-linearities, are
discussed. The measurements were carried out with prototype drift chambers of
the ALICE Transition Radiation Detector, but our findings can be generalized to
other drift chambers with similar geometry, where the electron drift is
perpendicular to the wire planes.Comment: 30 pages, 18 figure
Transition Radiation Spectroscopy with Prototypes of the ALICE TRD
We present measurements of the transition radiation (TR) spectrum produced in
an irregular radiator at different electron momenta. The data are compared to
simulations of TR from a regular radiator.Comment: 4 pages, 5 Figures, Proceedings for "TRDs for the 3rd millennium"
(Sept. 4-7, 2003, Bari, Italy
- …