97 research outputs found

    Phosphate-containing dialysis solution prevents hypophosphatemia during continuous renal replacement therapy

    Get PDF
    Background: Hypophosphatemia occurs in up to 80% of the patients during continuous renal replacement therapy (CRRT). Phosphate supplementation is time-consuming and the phosphate level might be dangerously low before normophosphatemia is re-established. This study evaluated the possibility to prevent hypophosphatemia during CRRT treatment by using a new commercially available phosphate-containing dialysis fluid. Methods: Forty-two heterogeneous intensive care unit patients, admitted between January 2007 and July 2008, undergoing hemodiafiltration, were treated with a new Gambro dialysis solution with 1.2 mM phosphate (Phoxilium) or with standard medical treatment (Hemosol B0). The patients were divided into three groups: group 1 (n=14) receiving standard medical treatment and intravenous phosphate supplementation as required, group 2 (n=14) receiving the phosphate solution as dialysate solution and Hemosol B0 as replacement solution and group 3 (n=14) receiving the phosphate-containing solution as both dialysate and replacement solutions. Results: Standard medical treatment resulted in hypophosphatemia in 11 of 14 of the patients (group 1) compared with five of 14 in the patients receiving phosphate solution as the dialysate solution and Hemosol B0 as the replacement solution (group 2). Patients treated with the phosphate-containing dialysis solution (group 3) experienced stable serum phosphate levels throughout the study. Potassium, ionized calcium, magnesium, pH, pCO(2) and bicarbonate remained unchanged throughout the study. Conclusion: The new phosphate-containing replacement and dialysis solution reduces the variability of serum phosphate levels during CRRT and eliminates the incidence of hypophosphatemia

    Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support

    Get PDF
    Surgical management of tetralogy of Fallot (TOF) results in anatomic and functional abnormalities in the majority of patients. Although right ventricular volume load due to severe pulmonary regurgitation can be tolerated for many years, there is now evidence that the compensatory mechanisms of the right ventricular myocardium ultimately fail and that if the volume load is not eliminated or reduced by pulmonary valve replacement the dysfunction might be irreversible. Cardiovascular magnetic resonance (CMR) has evolved during the last 2 decades as the reference standard imaging modality to assess the anatomic and functional sequelae in patients with repaired TOF. This article reviews the pathophysiology of chronic right ventricular volume load after TOF repair and the risks and benefits of pulmonary valve replacement. The CMR techniques used to comprehensively evaluate the patient with repaired TOF are reviewed and the role of CMR in supporting clinical decisions regarding pulmonary valve replacement is discussed

    The genetic basis of hypertrophic cardiomyopathy in cats and humans

    Full text link
    Mutations in genes that encode for muscle sarcomeric proteins have been identified in humans and two breeds of domestic cats with hypertrophic cardiomyopathy (HCM). This article reviews the history, genetics, and pathogenesis of HCM in the two species in order to give veterinarians a perspective on the genetics of HCM. Hypertrophic cardiomyopathy in people is a genetic disease that has been called a disease of the sarcomere because the preponderance of mutations identified that cause HCM are in genes that encode for sarcomeric proteins (Maron and Maron, 2013). Sarcomeres are the basic contractile units of muscle and thus sarcomeric proteins are responsible for the strength, speed, and extent of muscle contraction. In people with HCM, the two most common genes affected by HCM mutations are the myosin heavy chain gene (MYH7), the gene that encodes for the motor protein ÎČ-myosin heavy chain (the sarcomeric protein that splits ATP to generate force), and the cardiac myosin binding protein-C gene (MYBPC3), a gene that encodes for the closely related structural and regulatory protein, cardiac myosin binding protein-C (cMyBP-C). To date, the two mutations linked to HCM in domestic cats (one each in Maine Coon and Ragdoll breeds) also occur in MYBPC3 (Meurs et al., 2005, 2007). This is a review of the genetics of HCM in both humans and domestic cats that focuses on the aspects of human genetics that are germane to veterinarians and on all aspects of feline HCM genetics

    Hypophosphatemia

    No full text

    Quantification of aortic valvular regurgitation in dogs by nuclear imaging.

    No full text

    Questions About MVP Remain Unanswered

    No full text
    • 

    corecore