9 research outputs found

    Dissipation Characteristics of Tornadic Vortex Signatures Associated with Long-Duration Tornadoes

    Get PDF
    Weather Surveillance Radar–1988 Doppler (WSR-88D) data from 36 tornadic supercell cases from 2012 to 2016 are investigated to identify common tornadic vortex signature (TVS) behaviors prior to tornado dissipation. Based on the results of past case studies, four characteristics of TVSs associated with tornado dissipation were identified: weak or decreasing TVS intensity, rearward storm-relative motion of the TVS, large or increasing TVS vertical tilt, and large or increasing TVS horizontal displacement from the main storm updraft. Only cases in which a TVS was within 60 km of a WSR-88D site in at least four consecutive volumes at the end of the tornado life cycle were examined. The space and time restrictions on case selection ensured that the aforementioned quantities could be determined within ~500 m of the surface at several time periods despite the relatively coarse spatiotemporal resolution of WSR-88D systems. It is found that prior to dissipation, TVSs become increasingly less intense, tend to move rearward in a storm-relative framework, and become increasingly more separated from the approximate location of the main storm updraft. There is no clear signal in the relationship between tornado tilt, as measured in inclination angle, and TVS dissipation. The frequency of combinations of TVS dissipation behaviors, the impact of increased low-level WSR-88D scanning on dissipation detection, and prospects for future nowcasting of tornado life cycles also are discussed

    Dissipation Characteristics of Tornadic Vortex Signatures Associated with Long-Duration Tornadoes

    Get PDF
    Weather Surveillance Radar–1988 Doppler (WSR-88D) data from 36 tornadic supercell cases from 2012 to 2016 are investigated to identify common tornadic vortex signature (TVS) behaviors prior to tornado dissipation. Based on the results of past case studies, four characteristics of TVSs associated with tornado dissipation were identified: weak or decreasing TVS intensity, rearward storm-relative motion of the TVS, large or increasing TVS vertical tilt, and large or increasing TVS horizontal displacement from the main storm updraft. Only cases in which a TVS was within 60 km of a WSR-88D site in at least four consecutive volumes at the end of the tornado life cycle were examined. The space and time restrictions on case selection ensured that the aforementioned quantities could be determined within ~500 m of the surface at several time periods despite the relatively coarse spatiotemporal resolution of WSR-88D systems. It is found that prior to dissipation, TVSs become increasingly less intense, tend to move rearward in a storm-relative framework, and become increasingly more separated from the approximate location of the main storm updraft. There is no clear signal in the relationship between tornado tilt, as measured in inclination angle, and TVS dissipation. The frequency of combinations of TVS dissipation behaviors, the impact of increased low-level WSR-88D scanning on dissipation detection, and prospects for future nowcasting of tornado life cycles also are discussed

    Landsat identification of Tornado damage by land cover and an evaluation of damage recovery in forests

    No full text
    Multispectral satellite imagery provides a spaceborne perspective on tornado damage identification; however, few studies have explored how tornadoes alter the spectral signature of different land-cover types. In part 1 of this study, Landsat surface reflectance is used to explore how 17 tornadoes modify the spectral signature, NDVI, and "Tassled Cap" parameters inside forest (N = 16), grassland (N = 10), and urban (N = 17) land cover. Land cover influences the magnitude of change observed, particularly in spring/summer imagery, with most tornado-damaged surfaces exhibiting a higher median reflectance in the visible and shortwave infrared, and a lower median reflectance in the near-infrared spectral ranges. These changes result in a higher median Tasseled Cap brightness, lower Tasseled Cap greenness and wetness, and lower NDVI relative to unaffected areas. Other factors affecting the magnitude of change in reflectance include season, vegetation condition, land-cover heterogeneity, and tornado strength. While vegetation indices like NDVI provide a quick way to identify damage, they have limited utility when monitoring recovery because of the cyclical seasonal vegetation cycle. Since tornado damage provides an analogous spectral signal to that of forest clearing, NDVI is compared with a forest disturbance index (DI) across a 5-yr Landsat climatology surrounding the 27 April 2011 tornado outbreak in part 2 of this study. Preoutbreak DI values remain relatively stable across seasons. In the five tornado-damaged areas evaluated, DI values peak within 6 months followed by a decline coincident with ongoing recovery. DI-like metrics provide a seasonally independent mechanism to fill the gap in identifying damage and monitoring recovery

    Antenna structures and cloud-to-ground lightning location : 1995–2015

    No full text
    Spatial analyses of cloud-to-ground (CG) lightning occurrence due to a rapid expansion in the number of antenna towers across the United States are explored by gridding 20 years of National Lightning Detection Network data at 500 m spatial resolution. The 99.8% of grid cells with ≥100 CGs were within 1 km of an antenna tower registered with the Federal Communications Commission. Tower height is positively correlated with CG occurrence; towers taller than 400 m above ground level experience a median increase of 150% in CG lightning density compared to a region 2 km to 5 km away. In the northern Great Plains, the cumulative CG lightning density near the tower was around 138% (117%) higher than a region 2 to 5 km away in the September–February (March–August) months. Higher CG frequencies typically also occur in the first full year following new tower construction, creating new lightning hot spots

    Effects of city size on thunderstorm evolution revealed through a multiradar climatology of the central United States

    No full text
    Five years of 0.01° latitude × 0.01° longitude multiradar multisensor grids of composite reflectivity and vertically integrated signals from the maximum expected size of hail (MESH) and vertically integrated liquid (VIL) were created to examine the role of city size on thunderstorm occurrence and strength around four cities: Dallas-Fort Worth, Texas; Minneapolis-St. Paul, Minnesota; Oklahoma City, Oklahoma; and Omaha, Nebraska. A storm-tracking algorithm identified thunderstorm areas every minute and connected them together to form tracks. These tracks defined the upwind and downwind regions around each city on a storm-by-storm basis and were analyzed in two ways: 1) by sampling the maximum value every 10 min and 2) by accumulating the spatial footprint over its lifetime. Beyond examining all events, a subset of events corresponding to favorable conditions for urban modification was explored. This urban favorable (UF) subset consisted of nonsupercells occurring in the late afternoon/evening in the meteorological summer on weak synoptically forced days. When examining all thunderstorm events, regions at variable ranges upwind of all four cities generally had higher areal mean values of reflectivity, MESH, and VIL relative to downwind areas. In the UF subset, the larger cities (Dallas-Fort Worth and Minneapolis-St. Paul) had a 24%-50% increase in the number of downwind thunderstorms, resulting in a higher areal mean reflectivity, MESH, and VIL in this region. The smaller cities (Oklahoma City and Omaha) did not show such a downwind enhancement in thunderstorm occurrence and strength for the radar variables examined. This pattern suggests that larger cities could increase thunderstorm occurrence and intensity downwind of the prevailing flow under unique environmental conditions

    Effects of City Size on Thunderstorm Evolution Revealed Through a Multi-Radar Climatology of the Central United States

    No full text
    Five years of 0.01° latitude x 0.01° longitude multi-radar multi-sensor grids of composite reflectivity and vertically-integrated signals from maximum expected size of hail (MESH) and vertically integrated liquid (VIL) were created to examine the role of city size on thunderstorm occurrence and strength around four cities: Dallas/Ft. Worth, TX; Minneapolis/St. Paul, MN; Oklahoma City, OK; and Omaha, NE. A storm-tracking algorithm identified thunderstorm areas every minute and connected them together to form tracks. These tracks defined the upwind and downwind regions around each city on a storm-by-storm basis and were analyzed in two ways: (1) by sampling the maximum value every 10 min. and (2) accumulating the spatial footprint over its lifetime. Beyond examining all events, a subset of events corresponding to favorable conditions for urban modification were explored. This urban favorable (UF) subset consisted of non-supercells occurring in the late afternoon/evening in the meteorological summer on weak synoptically forced days. When examining all thunderstorm events, regions at variable ranges upwind of all four cities generally had higher areal mean values of reflectivity, MESH, and VIL compared to downwind areas. In the UF subset, the larger cities (Dallas/Ft. Worth and Minneapolis/St. Paul) had a 24-50% increase in the number of downwind thunderstorms, resulting in a higher areal mean reflectivity, MESH, and VIL in this region. The smaller cities (Oklahoma City and Omaha) did not show such a downwind enhancement in thunderstorm occurrence and strength for the radar variables examined. This pattern suggests that larger cities could increase thunderstorm occurrence and intensity downwind of the prevailing flow under unique environmental conditions
    corecore