162 research outputs found

    Structure and activity of lacustrine sediment bacteria involved in nutrient and iron cycles

    Get PDF
    Knowledge about the bacterial community structure in sediments is essential to better design restoration strategies for eutrophied lakes. In that regard, the aim of this study was to quantify the abundance and activity of bacteria involved in nutrient and iron cycling in sediments from four Azorean lakes with distinct trophic states (Verde, Azul, Furnas and Fogo). Inferred from quantitative PCR, bacteria performing anaerobic ammonia oxidation, were the most abundant in the eutrophic lakes Verde, Azul and Furnas (4.5 % to 16.6 %), followed by nitrifying bacteria (0.8 % to 13.0 %), denitrifying bacteria (0.5 % to 6.8 %), iron-reducing bacteria (0.2 % to 1.4 %), and phosphorus-accumulating organisms (<0.3 %). In contrast, denitrifying bacteria dominated sediments from the oligo-mesotrophic lake Fogo (8.8 %). Activity assays suggested that bacteria performing ammonia oxidation (aerobic and anaerobic), nitrite oxidation, heterothrophic nitrate reduction, iron reduction and biological phosphorus storage/release were present and active in all Azorean lake sediments. The present work also suggested that the activity of denitrifying bacteria might contribute to the release of phosphorus from sediments.The authors are indebted and grateful to the Regional Department of Water Resources and Land Planning (Azores) for the grant (Contrato Excepcionado no. 4/2008/ DROTRH) and its staff (Dina Pacheco), and to Virgilio Cruz and Paulo Antunes (Geosciences Department, University of Azores) for the useful help in sediments' collection, to the technical staff of the Department of Environmental Engineering - DTU for chemical analysis, to Laurent Philippot (INRA - University of Burgundy) for positive controls for DNB, to Richard Glaven and Derek Lovley (Department of Microbiology, University of Massachusetts) for Geobacter strains, to Paul Bodelier, Marzia Milleto and Marion Meima (Netherlands Institute of Ecology, NIOO-KNAW) for SRB clones and to Yunhong Kong and Per Halkjaer Nielsen (Department of Life Sciences, Section of Environmental Engineering, Aalborg University) for PAO clones. The authors also acknowledge the Grant SFRH/BD/25639/2005 from the Foundation for Science and Technology/M.C.T.(Portugal) awarded to G. M. and a Marie Curie Excellence Award (EC FP6) to B.F.S

    Experimental determination of Anammox decay coefficient

    No full text
    none4This paper describes an experimental method used to evaluate the anaerobic ammonium oxidation (Anammox) decay coefficient by means of a batch test. The test was carried out using an experimental procedure based on manometric measurements of the dinitrogen gas that is produced by the Anammox process. The accuracy of the procedure had previously been assessed, and the method was used to determine the specific Anammox activity (SAA mg N2-N g VSS−1 d−1,) and the maximum nitrogen production rate (MNPR, NmL N2 L−1 d−1) under several different conditions. A specific batch test, which lasted for 148 days, was performed to assess the decay coefficient. The activity decrease was monitored and the estimated value of the decay coefficient was found to be 0.0048 d−1 at 35 °C, for which the corresponding half-life time of the Anammox biomass was 145 days. This value is higher than other values reported in the literature, but in accordance with the slow growth rate of the Anammox bacteria.D. Scaglione; S. Caffaz; E. Bettazzi; C. LubelloScaglione, Davide; S., Caffaz; E., Bettazzi; C., Lubell

    Stability of the ANAMMOX process in a gas-lift reactor and a SBR

    No full text
    In the last years, the ANAerobic AMMonium OXidation (ANAMMOX) process has been put forward as a promising alternative to treat ammonium rich wastewaters. An ANAMMOX gas-lift reactor and a sequential batch reactor (SBR) were operated during around 200 days in this study, reaching nitrogen loading rates (NLRs) of 2.0 and 0.75 g l(-1) per day, respectively. The efficiency in the nitrite (limiting substrate) removal was 99%. The ammonium and nitrite influent concentrations were increased stepwise until biomass in the reactors started to float. These flotation events coincided with periods when the NLR exceeded the maximum specific ANAMMOX activity (MSAA) of the sludge. The MSAA, determined in batch experiments, was 0.9 and 0.44 g g(-1) per day for biomasses from the gas-lift reactor and the SBR, respectively. Flotation of the biomass occurred most likely due to a granule density decrease caused by dinitrogen gas accumulation inside the granules and an apparent breakage of the granules. Further research is needed to understand this phenomenon and to optimise the corresponding strategies to counteract the location. (C) 2004 Elsevier B.V. All rights reserved

    Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen-gas production

    No full text
    Contains fulltext : 35882.pdf (publisher's version ) (Closed access
    corecore