Abstract

Knowledge about the bacterial community structure in sediments is essential to better design restoration strategies for eutrophied lakes. In that regard, the aim of this study was to quantify the abundance and activity of bacteria involved in nutrient and iron cycling in sediments from four Azorean lakes with distinct trophic states (Verde, Azul, Furnas and Fogo). Inferred from quantitative PCR, bacteria performing anaerobic ammonia oxidation, were the most abundant in the eutrophic lakes Verde, Azul and Furnas (4.5 % to 16.6 %), followed by nitrifying bacteria (0.8 % to 13.0 %), denitrifying bacteria (0.5 % to 6.8 %), iron-reducing bacteria (0.2 % to 1.4 %), and phosphorus-accumulating organisms (<0.3 %). In contrast, denitrifying bacteria dominated sediments from the oligo-mesotrophic lake Fogo (8.8 %). Activity assays suggested that bacteria performing ammonia oxidation (aerobic and anaerobic), nitrite oxidation, heterothrophic nitrate reduction, iron reduction and biological phosphorus storage/release were present and active in all Azorean lake sediments. The present work also suggested that the activity of denitrifying bacteria might contribute to the release of phosphorus from sediments.The authors are indebted and grateful to the Regional Department of Water Resources and Land Planning (Azores) for the grant (Contrato Excepcionado no. 4/2008/ DROTRH) and its staff (Dina Pacheco), and to Virgilio Cruz and Paulo Antunes (Geosciences Department, University of Azores) for the useful help in sediments' collection, to the technical staff of the Department of Environmental Engineering - DTU for chemical analysis, to Laurent Philippot (INRA - University of Burgundy) for positive controls for DNB, to Richard Glaven and Derek Lovley (Department of Microbiology, University of Massachusetts) for Geobacter strains, to Paul Bodelier, Marzia Milleto and Marion Meima (Netherlands Institute of Ecology, NIOO-KNAW) for SRB clones and to Yunhong Kong and Per Halkjaer Nielsen (Department of Life Sciences, Section of Environmental Engineering, Aalborg University) for PAO clones. The authors also acknowledge the Grant SFRH/BD/25639/2005 from the Foundation for Science and Technology/M.C.T.(Portugal) awarded to G. M. and a Marie Curie Excellence Award (EC FP6) to B.F.S

    Similar works