19 research outputs found

    Thiazolidinone-Related Heterocyclic Compounds as Potential Antitrypanosomal Agents

    Get PDF
    Human African trypanosomiasis (HAT) and Chagas disease are neglected tropical diseases (NTDs) due to parasite protists from the Trypanosoma genus transmitted by insect vectors. Trypanosomiases affect mostly poor populations in the developing countries, and the development of new antitrypanosomal drugs is underinvested by governments and the pharmaceutical industry. In this chapter, we described the development of 4-thiazolidinone and thiazole derivatives with heterocyclic fragments which exhibit good inhibition of trypanosome growth and might constitute potential candidates for the development of new drugs against trypanosomiasis. Antitrypanosomal design, mainly within structure-based design, led to the synthesis of 5-ene-4-thiazolidinone-3-alkanecarboxylic acids; 2,3-disubstituted 4-thiazolidinones; thiazolidinone-pyrazoline, phenylindole-thiazolidinone, and imidazothiadiazole-thiazolidinone hybrids; as well as 4-thiazolidinone-based fused heterocycles, especially thiopyrano[2,3-d]thiazoles, and non-thiazolidinone compounds–namely, isothiocoumarine derivatives. Moreover, antitrypanosomal 4-thiazolidinones are of special interest in the search for new antimalarial and antileishmanial agents. Also many active anticancer agents among the abovementioned 4-thiazolidinones have been discovered

    A Facile Synthesis and Anticancer Activity Evaluation of Spiro[Thiazolidinone-Isatin] Conjugates

    Get PDF
    The synthesis and evaluation of the anticancer activity of 3′-aryl-5′-arylidene-spiro[3H-indole-3,2′-thiazolidine]-2,4′(1H)-diones and spiro[3H-indole-3,2′-thi-azolidine]-2,4′(1H)-dione-3′-alkanoic acid esters were described. The structure of the compounds was determined by 1H and 13C NMR and their in vitro anticancer activity was tested in the National Cancer Institute. Among the tested compounds, (5′Z)-5′-(benzylidene)-3′-(4-chlorophenyl)spiro[3H-indole-3,2′-thia-zolidine]-2,4′(1H)-dione (IIa) and (5′Z)-3′-(4-chlorophenyl)-5′-[4-(1-methylethyl)-benzylidene]spiro[3H-indole-3,2′-thiazolidine]-2,4′(1H)-dione (IIb) were superior to other related compounds

    Sildenafil reduces signs of oxidative stress in pulmonary arterial hypertension: Evaluation by fatty acid composition, level of hydroxynonenal and heart rate variability

    Get PDF
    AbstractPulmonary arterial hypertension (PAH) is a rare multifactorial disease with an unfavorable prognosis. Sildenafil therapy can improve functional capacity and pulmonary hemodynamics in PAH patients. Nowadays, it is increasingly recognized that the effects of sildenafil are pleiotropic and may also involve changes of the pro-/antioxidant balance, lipid peroxidation and autonomic control. In present study we aimed to assess the effects of sildenafil on the fatty acids (FAs) status, level of hydroxynonenal (HNE) and heart rate variability (HRV) in PAH patients. Patients with PAH were characterized by an increase in HNE and changes in the FAs composition with elevation of linoleic, oleic, docosahexanoic acids in phospholipids as well as reduced HRV with sympathetic predominance. Sildenafil therapy improved exercise capacity and pulmonary hemodynamics and reduced NT-proBNP level in PAH. Antioxidant and anti-inflammatory effects of sildenafil were noted from the significant lowering of HNE level and reduction of the phopholipid derived oleic, linoleic, docosahexanoic, docosapentanoic FAs. That was also associated with some improvement of HRV on account of the activation of the neurohumoral regulatory component. Incomplete recovery of the functional metabolic disorders in PAH patients may be assumed from the persistent increase in free FAs, reduced HRV with the sympathetic predominance in the spectral structure after treatment comparing to control group. The possibilities to improve PAH treatment efficacy through mild stimulation of free radical reactions and formation of hormetic reaction in the context of improved NO signaling are discussed

    European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS).

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.The EU-ROS consortium (COST Action BM1203) was supported by the European Cooperation in Science and Technology (COST). The present overview represents the final Action dissemination summarizing the major achievements of COST Action BM1203 (EU-ROS) as well as research news and personal views of its members. Some authors were also supported by COST Actions BM1005 (ENOG) and BM1307 (PROTEOSTASIS), as well as funding from the European Commission FP7 and H2020 programmes, and several national funding agencies

    Persistent accumulation of 4-hydroxynonenal-protein adducts in gastric mucosa after Helicobacter pylori eradication [Povećano nakupljanje 4-hidroksinonenal-proteinskih konjugata u želučanoj sluznici zaostaje nakon izlječenja Helicobacter pylori]

    Get PDF
    Recent studies indicate that oxidative stress caused by Helicobacter pylori and insufficient host antioxidant defense could play important role in pathogenesis of gastrointestinal ulcerations. By specific monoclonal antibodies we have detected weak presence of the major lipid peroxidation bioactive marker 4-hydroxynonenal (HNE) in healthy human gastric mucosa, which strongly increased in case of H. pylori-associated peptic ulcer. Considering physiological presence of HNE on one hand, and high prevalence of H. pylori associated disorders on the other, evaluation of oxidative stress after treatment is important. Therefore, in current study immunohistochemical accumulation and distribution of HNE-protein adducts in gastric mucosa was evaluated with 21 patients having H. pylori-associated duodenal peptic ulcer (DPU) before and one month after eradication of H. pylori. Although dramatic decrease in histological manifestations of inflammation was demonstrated after eradication of H. pylori, initially high immunopositivity for the HNE-protein adducts remained elevated in antrum and even increased in stomach corpus. The observed accumulation and redistribution to higher grades of HNE-immunopositivity in nuclei of glandular cells in gastric corpus indicate augmentation of oxidative stress after treatment and open possibilities for adjuvant antioxidant treatments to protect gastric mucosa from progressive oxidative stress after eradication of H. pylori infection

    Isothiochromenothiazoles—A Class of Fused Thiazolidinone Derivatives with Established Anticancer Activity That Inhibits Growth of Trypanosoma brucei brucei

    No full text
    International audienceRecently, thiazolidinone derivatives have been widely studied as antiparasitic agents. Previous investigations showed that fused 4-thiazolidinone derivatives (especially thiopyranothiazoles) retain pharmacological activity of their synthetic precursors-simple 5-ene-4-thiazolidinones. A series of isothiochromeno[4a,4-d][1,3] thiazoles was investigated in an in vitro assay towards bloodstream forms of Trypanosoma brucei brucei. All compounds inhibited parasite growth at concentrations in the micromolar range. The established low acute toxicity of this class of compounds along with a good trypanocidal profile indicates that isothiochromenothiazole derivatives may be promising for designing new antitrypanosomal drugs

    Evaluation of Anticancer and Antibacterial Activity of Four 4-Thiazolidinone-Based Derivatives

    No full text
    Heterocycles are commonly known for their unique features, e.g., antibacterial or anticancer properties. Although many synthetic heterocycles, such as 4-thiazolidinone (4-TZD), have been synthesized, their potential applications have not yet been fully investigated. However, many researchers have reported relevant results that can be a basis for the search for new potential drugs. Therefore, the aim of this study was to evaluate the cytotoxic, cytostatic, and antibacterial effects of certain 4-thiazolidinone-based derivatives, Les-3166, Les-5935, Les-6009, and Les-6166, on human fibroblasts (BJ), neuroblastoma (SH-SY5Y), epithelial lung carcinoma (A549), and colorectal adenocarcinoma (CACO-2) cell lines in vitro. All tested compounds applied in a concentration range from 10 to 100 µM were able to decrease metabolic activity in the BJ, A549, and SH-SY5Y cell lines. However, the action of Les-3166 was mainly based on the ROS-independent pathway, similarly to Les-6009. In turn, Les-5935 and Les-6166 were able to promote ROS production in BJ, A549, and SH-SY5Y cells, compared to the control. Les-3166, Les-6009, and Les-6166 significantly increased the caspase-3 activity, especially at the concentrations of 50 µM and 100 µM. However, Les-5935 did not induce apoptosis. Only Les-5935 showed a minor cytostatic effect on SH-SY5Y cells. Additionally, the antibacterial properties of the tested compounds against P. aeruginosa bacterial biofilm can be ranked as follows: Les-3166 > Les-5935 > Les-6009. Les-6166 did not show any anti-biofilm activity. In summary, the study showed that Les-5935, Les-6009, and Les-6166 were characterized by anticancer properties, especially in the human lung cancer cell. In cases of BJ, SH-SY5Y, and CACO-2 cells the anticancer usage of such compounds is limited due to effect visible only at 50 and 100 µM
    corecore