5 research outputs found

    Limitations in Predicting Radiation-Induced Pharmaceutical Instability during Long-Duration Spaceflight

    Get PDF
    As human spaceflight seeks to expand beyond low-Earth orbit, NASA and its international partners face numerous challenges related to ensuring the safety of their astronauts, including the need to provide a safe and effective pharmacy for long-duration spaceflight. Historical missions have relied upon frequent resupply of onboard pharmaceuticals; as a result, there has been little study into the effects of long-term exposure of pharmaceuticals to the space environment. Of particular concern are the long-term effects of space radiation on drug stability, especially as missions venture away from the protective proximity of the Earth. Here we highlight the risk of space radiation to pharmaceuticals during exploration spaceflight, identifying the limitations of current understanding. We further seek to identify ways in which these limitations could be addressed through dedicated research efforts aimed towards the rapid development of an effective pharmacy for future spaceflight endeavors.Comment: in press, Nature Microgravit

    Stability of Dosage Forms in the Pharmaceutical Payload Aboard Space Missions

    No full text
    Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the space flight environment may adversely affect the shelf life of pharmaceuticals aboard space missions

    Evaluation of Physical and Chemical Changes in Pharmaceuticals Flown on Space Missions

    No full text
    Efficacy and safety of medications used for the treatment of astronauts in space may be compromised by altered stability in space. We compared physical and chemical changes with time in 35 formulations contained in identical pharmaceutical kits stowed on the International Space Station (ISS) and on Earth. Active pharmaceutical content (API) was determined by ultra- and high-performance liquid chromatography after returning to Earth. After stowage for 28 months in space, six medications aboard the ISS and two of matching ground controls exhibited changes in physical variables; nine medications from the ISS and 17 from the ground met the United States Pharmacopeia (USP) acceptance criteria for API content after 28 months of storage. A higher percentage of medications from each flight kit had lower API content than the respective ground controls. The number of medications failing API requirement increased as a function of time in space, independent of expiration date. The rate of degradation was faster in space than on the ground for many of the medications, and most solid dosage forms met USP standard for dissolution after storage in space. Cumulative radiation dose was higher and increased with time in space, whereas temperature and humidity remained similar to those on the ground. Exposure to the chronic low dose of ionizing radiation aboard the spacecraft as well as repackaging of solid dosage forms in flight-specific dispensers may adversely affect stability of pharmaceuticals. Characterization of degradation profiles of unstable formulations and identification of chemical attributes of stability in space analog environments on Earth will facilitate development of space-hardy medications

    Comparative Transcriptome Analyses Reveal Core Parasitism Genes and Suggest Gene Duplication and Repurposing as Sources of Structural Novelty

    No full text
    corecore