50 research outputs found

    Synthesis and Characterisation of a Boron-Rich Symmetric Triazine Bearing a Hypoxia-Targeting Nitroimidazole Moiety

    Get PDF
    Boron Neutron Capture Therapy (BNCT) is a binary therapy that promises to be suitable in treating many non-curable cancers. To that, the discovery of new boron compounds able to accumulate selectively in the tumour tissue is still required. Hypoxia, a deficiency of oxygen in tumor tissue, is a great challenge in the conventional treatment of cancer, because hypoxic areas are resistant to conventional anticancer treatments. 2-Nitroimidazole derivatives are known to be hypoxia markers due to their enrichment by bioreduction in hypoxic cells. In the present work, 2-nitroimidazole was chosen as the starting point for the synthesis of a new boron-containing compound based on a 1,3,5-triazine skeleton. Two o-carborane moieties were inserted to achieve a high ratio of boron on the molecular weight, exploiting a short PEG spacer to enhance the polarity of the compound and outdistance the active part from the core. The compound showed no toxicity on normal human primary fibroblasts, while it showed noteworthy toxicity in multiple myeloma cells together with a consistent intracellular boron accumulation

    Theranostics in Boron Neutron Capture Therapy

    Get PDF
    Boron neutron capture therapy (BNCT) has the potential to specifically destroy tumor cells without damaging the tissues infiltrated by the tumor. BNCT is a binary treatment method based on the combination of two agents that have no effect when applied individually: B-10 and thermal neutrons. Exclusively, the combination of both produces an effect, whose extent depends on the amount of B-10 in the tumor but also on the organs at risk. It is not yet possible to determine the B-10 concentration in a specific tissue using non-invasive methods. At present, it is only possible to measure the B-10 concentration in blood and to estimate the boron concentration in tissues based on the assumption that there is a fixed uptake of B-10 from the blood into tissues. On this imprecise assumption, BNCT can hardly be developed further. A therapeutic approach, combining the boron carrier for therapeutic purposes with an imaging tool, might allow us to determine the B-10 concentration in a specific tissue using a non-invasive method. This review provides an overview of the current clinical protocols and preclinical experiments and results on how innovative drug development for boron delivery systems can also incorporate concurrent imaging. The last section focuses on the importance of proteomics for further optimization of BNCT, a highly precise and personalized therapeutic approach

    Theranostics in Boron Neutron Capture Therapy

    Get PDF
    Boron neutron capture therapy (BNCT) has the potential to specifically destroy tumor cells without damaging the tissues infiltrated by the tumor. BNCT is a binary treatment method based on the combination of two agents that have no effect when applied individually: 10B and thermal neutrons. Exclusively, the combination of both produces an effect, whose extent depends on the amount of 10B in the tumor but also on the organs at risk. It is not yet possible to determine the 10B concentration in a specific tissue using non-invasive methods. At present, it is only possible to measure the 10B concentration in blood and to estimate the boron concentration in tissues based on the assumption that there is a fixed uptake of 10B from the blood into tissues. On this imprecise assumption, BNCT can hardly be developed further. A therapeutic approach, combining the boron carrier for therapeutic purposes with an imaging tool, might allow us to determine the 10B concentration in a specific tissue using a non-invasive method. This review provides an overview of the current clinical protocols and preclinical experiments and results on how innovative drug development for boron delivery systems can also incorporate concurrent imaging. The last section focuses on the importance of proteomics for further optimization of BNCT, a highly precise and personalized therapeutic approach

    Theranostics in Boron neutron capture therapy

    Get PDF
    Boron neutron capture therapy (BNCT) has the potential to specifically destroy tumor cells without damaging the tissues infiltrated by the tumor. BNCT is a binary treatment method based on the combination of two agents that have no effect when applied individually:B and thermal neutrons. Exclusively, the combination of both produces an effect, whose extent depends on the amount ofB in the tumor but also on the organs at risk. It is not yet possible to determine theB concentration in a specific tissue using non-invasive methods. At present, it is only possible to measure theB concentration in blood and to estimate the boron concentration in tissues based on the assumption that there is a fixed uptake ofB from the blood into tissues. On this imprecise assumption, BNCT can hardly be developed further. A therapeutic approach, combining the boron carrier for therapeutic purposes with an imaging tool, might allow us to determine theB concentration in a specific tissue using a non-invasive method. This review provides an overview of the current clinical protocols and preclinical experiments and results on how innovative drug development for boron delivery systems can also incorporate concurrent imaging. The last section focuses on the importance of proteomics for further optimization of BNCT, a highly precise and personalized therapeutic approach.E.H.-H. and M.K. gratefully acknowledge support from the DFG (HE 1376/38-1); L.S. received funding from GEFLUC Grenoble Dauphiné Savoie

    Predictive Criteria to Study the Pathogenesis of Malaria-Associated ALI/ARDS in Mice

    Get PDF
    Malaria-associated acute lung injury/acute respiratory distress syndrome (ALI/ARDS) often results in morbidity and mortality. Murine models to study malaria-associated ALI/ARDS have been described; we still lack a method of distinguishing which mice will develop ALI/ARDS before death. This work aimed to characterize malaria-associated ALI/ARDS in a murine model and to demonstrate the first method to predict whether mice are suffering from ALI/ARDS before death. DBA/2 mice infected with Plasmodium berghei ANKA developing ALI/ARDS or hyperparasitemia (HP) were compared using histopathology, PaO2 measurement, pulmonary X-ray, breathing capacity, lung permeability, and serum vascular endothelial growth factor (VEGF) levels according to either the day of death or the suggested predictive criteria. We proposed a model to predict malaria-associated ALI/ARDS using breathing patterns (enhanced pause and frequency respiration) and parasitemia as predictive criteria from mice whose cause of death was known to retrospectively diagnose the sacrificed mice as likely to die of ALI/ARDS as early as 7 days after infection. Using this method, we showed increased VEGF levels and increased lung permeability in mice predicted to die of ALI/ARDS. This proposed method for accurately identifying mice suffering from ALI/ARDS before death will enable the use of this model to study the pathogenesis of this disease.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ São Paulo, Inst Ciencias Biomed, Dept Imunol, BR-05508900 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ciencias Biol, BR-09972270 Diadema, SP, BrazilUniv São Paulo, Inst Med Trop São Paulo, BR-05403000 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ciencias Exatas & Terra, BR-09972270 Diadema, SP, BrazilUniv São Paulo, Inst Ciencias Biomed, Dept Parasitol, BR-05508000 São Paulo, BrazilUniv São Paulo, Fac Med Vet & Zootecn, Dept Cirurgia, BR-05508270 São Paulo, BrazilUniv São Paulo, Fac Med Vet & Zootecn, Dept Med Vet Prevent & Saude Anim, BR-05508270 São Paulo, BrazilUniv São Paulo, Fac Ciencias Farmaceut, Dept Anal Clin & Toxicol, BR-05508000 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ciencias Biol, BR-09972270 Diadema, SP, BrazilUniversidade Federal de São Paulo, Dept Ciencias Exatas & Terra, BR-09972270 Diadema, SP, BrazilFAPESP: 2009/53256-7FAPESP: 2009/53889-0CNPq: 306668/2012-2CNPq: 470590/2009-2Web of Scienc

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    A Short Method for the Synthesis of Hydroxyoleic Acids

    No full text
    Enzymatic or microbiological oxidation of oleic acid can afford azelaic acid as a building block for bioplastics. However, during the oxidation, the formation of hydroxylated byproducts is observed. To better follow the oxidation reaction, the availability of reference compounds is of great importance. To this aim, the synthesis of a series of oleic acids hydroxylated at \u3c9 \u2010 1, \u3c9 \u2010 2, \u3c9 \u2010 3 positions is described without the use of protecting groups. The final products are obtained by partial lactone reduction to hydroxyaldehyde followed by Grignard addition, selective oxidation of the primary hydroxyl group, and Wittig reaction

    Unusual promoters and leaving groups in glycosylation reactions: The evolution of carbohydrate synthesis

    No full text
    Glycosylation is the key reaction by which our body can produce and modify carbohydrates and their conjugates which are molecules essential for life. The study of the diversity of their functions is a current and ever-expanding topic that requires the ability to provide pure saccharides quickly, efficiently and in a controlled way which can be achieved by chemical synthesis. Although the influence of the donor and the promoter on the outcome of a glycosylation reaction is well documented, the search for new methodologies and new promoters/activators is constantly expanding. In this review, after an introduction dealing with well-known glycosylation strategies, we describe the most recent advances in terms of the use of innovative approaches, focalizing the study on new promoters and leaving groups exploited in the last ten years
    corecore