1,569 research outputs found

    Genetic ablation of calcium-independent phospholipase A2γ induces glomerular injury in mice

    Get PDF
    Glomerular visceral epithelial cells (podocytes) play a critical role in the maintenance of glomerular permselectivity. Podocyte injury, manifesting as proteinuria, is the cause of many glomerular diseases. We reported previously that calcium-independent phospholipase A(2)γ (iPLA(2)γ) is cytoprotective against complement-mediated glomerular epithelial cell injury. Studies in iPLA(2)γ KO mice have demonstrated an important role for iPLA(2)γ in mitochondrial lipid turnover, membrane structure, and metabolism. The aim of the present study was to employ iPLA(2)γ KO mice to better understand the role of iPLA(2)γ in normal glomerular and podocyte function as well as in glomerular injury. We show that deletion of iPLA(2)γ did not cause detectable albuminuria; however, it resulted in mitochondrial structural abnormalities and enhanced autophagy in podocytes as well as loss of podocytes in aging KO mice. Moreover, after induction of anti-glomerular basement membrane nephritis in young mice, iPLA(2)γ KO mice exhibited significantly increased levels of albuminuria, podocyte injury, and loss of podocytes compared with wild type. Thus, iPLA(2)γ has a protective functional role in the normal glomerulus and in glomerulonephritis. Understanding the role of iPLA(2)γ in glomerular pathophysiology provides opportunities for the development of novel therapeutic approaches to glomerular injury and proteinuria

    Orality and mobility: Documenting Himalayan voices in New York City

    Get PDF
    Orality and mobility: Documenting Himalayan voices in New York Cit

    A separable domain of the p150 subunit of human Chromatin Assembly Factor-1 promotes protein and chromosome associations with nucleoli

    Get PDF
    Chromatin Assembly Factor-1 (CAF-1) is a three-subunit protein complex conserved throughout eukaryotes that deposits histones during DNA synthesis. Here, we present a novel role for the human p150 subunit in regulating nucleolar macromolecular interactions. Acute depletion of p150 causes redistribution of multiple nucleolar proteins and reduces nucleolar association with several repetitive element-containing loci. Notably, a point mutation in a SUMO-interacting motif (SIM) within p150 abolishes nucleolar associations, whereas PCNA or HP1 interaction sites within p150 are not required for these interactions. Additionally, acute depletion of SUMO-2 or the SUMO E2 ligase Ubc9 reduces alpha-satellite DNA association with nucleoli. The nucleolar functions of p150 are separable from its interactions with the other subunits of the CAF-1 complex, because an N-terminal fragment of p150 (p150N) that cannot interact with other CAF-1 subunits is sufficient for maintaining nucleolar chromosome and protein associations. Therefore, these data define novel functions for a separable domain of the p150 protein, regulating protein and DNA interactions at the nucleolus

    Negotiating Invisibility at the Epicenter: Himalayan New Yorkers Confront Covid-19

    Get PDF
    Through audio diaries and interviews, former SSRC fellow Sienna Craig and her collaborators chronicled the experiences of Himalayan New Yorkers during the pandemic. Many Himalayans live in central Queens, the epicenter of the Covid-19 outbreak in New York City. This essay shares the many challenges faced by the Himalayan community, not least their struggle to be seen as a “community” with its own needs. But it also emphasizes the responses of Himalayans in terms of collective self-help and making claims on city government for attention and essential services

    Herschel observations of the hydroxyl radical (OH) in young stellar objects

    Get PDF
    Water in Star-forming regions with Herschel (WISH) is a Herschel Key Program investigating the water chemistry in young stellar objects (YSOs) during protostellar evolution. Hydroxyl (OH) is one of the reactants in the chemical network most closely linked to the formation and destruction of H2O. High-temperature chemistry connects OH and H2O through the OH + H2 H2O + H reactions. Formation of H2O from OH is efficient in the high-temperature regime found in shocks and the innermost part of protostellar envelopes. Moreover, in the presence of UV photons, OH can be produced from the photo-dissociation of H2O. High-resolution spectroscopy of the OH 163.12 micron triplet towards HH 46 and NGC 1333 IRAS 2A was carried out with the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel. The low- and intermediate-mass YSOs HH 46, TMR 1, IRAS 15398-3359, DK Cha, NGC 7129 FIRS 2, and NGC 1333 IRAS 2A were observed with the Photodetector Array Camera and Spectrometer (PACS) in four transitions of OH and two [OI] lines. The OH transitions at 79, 84, 119, and 163 micron and [OI] emission at 63 and 145 micron were detected with PACS towards the class I low-mass YSOs as well as the intermediate-mass and class I Herbig Ae sources. No OH emission was detected from the class 0 YSO NGC 1333 IRAS 2A, though the 119 micron was detected in absorption. With HIFI, the 163.12 micron was not detected from HH 46 and only tentatively detected from NGC 1333 IRAS 2A. The combination of the PACS and HIFI results for HH 46 constrains the line width (FWHM > 11 km/s) and indicates that the OH emission likely originates from shocked gas. This scenario is supported by trends of the OH flux increasing with the [OI] flux and the bolometric luminosity. Similar OH line ratios for most sources suggest that OH has comparable excitation temperatures despite the different physical properties of the sources.Comment: Accepted for publication in Astronomy and Astrophysics (Herschel special issue

    Preferences and priorities for relapsed multiple myeloma treatments among patients and caregivers in the United States

    Get PDF
    Introduction/Background: This study aimed to describe patient and caregiver preferences for treatments of relapsed or refractory multiple myeloma (MM). Materials and Methods: A survey including discrete-choice experiment (DCE) and best-worst scaling (BWS) exercises was conducted among US patients with relapsed or refractory MM and their caregivers. The DCE included six attributes with varying levels including progression-free survival (PFS), toxicity, and mode and frequency of administration. In addition, the impact of treatment cost was assessed using a fixed-choice question. The BWS exercise included 18 items (modes and frequency of administration, additional treatment convenience, and toxicity items). The survey was administered online to patients recruited from the Multiple Myeloma Research Foundation CoMMpass study (NCT01454297). Results: The final samples consisted of 94 patients and 32 caregivers. Avoiding severe nerve damage was most important to patients, followed by longer PFS. Caregivers considered PFS to be the most important attribute. We estimate that a third or more of patients were cost-sensitive, meaning their treatment preference was altered based on cost implications. Caregivers were not cost-sensitive. The three most bothersome treatment features in the BWS exercise were risk of kidney failure, lowering white blood cell counts, and weakening the immune system. Conclusion: Patients with relapsed or refractory MM and their caregivers consider many factors including efficacy, toxicity, mode/frequency of administration, and cost in their decisions regarding treatment options. The study provides a basis for future Research on patient and caregiver treatment preferences, which could be incorporated into shared decision-making with physicians

    H2O line mapping at high spatial and spectral resolution - Herschel observations of the VLA1623 outflow

    Get PDF
    Apart from being an important coolant, H2O is known to be a tracer of high-velocity molecular gas. Recent models predict relatively high abundances behind interstellar shockwaves. The dynamical and physical conditions of the H2O emitting gas, however, are not fully understood yet. We aim to determine the abundance and distribution of H2O, its kinematics and the physical conditions of the gas responsible for the H2O emission. The observed line profile shapes help us understand the dynamics in molecular outflows. We mapped the VLA1623 outflow, in the ground-state transitions of o-H2O, with the HIFI and PACS instruments. We also present observations of higher energy transitions of o-H2O and p-H2O obtained with HIFI and PACS towards selected outflow positions. From comparison with non-LTE radiative transfer calculations, we estimate the physical parameters of the water emitting regions. The observed water emission line profiles vary over the mapped area. Spectral features and components, tracing gas in different excitation conditions, allow us to constrain the density and temperature of the gas. The H2O emission originates in a region where temperatures are comparable to that of the warm H2 gas (T\gtrsim200K). Thus, the H2O emission traces a gas component significantly warmer than the gas responsible for the low-J CO emission. The H2O column densities at the CO peak positions are low, i.e. N(H2O) \simeq (0.03-10)x10e14 cm-2. The H2O abundance with respect to H2 in the extended outflow is estimated at X(H2O)<1x10e-6, significantly lower than what would be expected from most recent shock models. The H2O emission traces a gas component moving at relatively high velocity compared to the low-J CO emitting gas. However, other dynamical quantities such as the momentum rate, energy and mechanical luminosity are estimated to be the same, independent of the molecular tracer used, CO or H2O.Comment: 14 pages, 13 figures, 4 table
    corecore