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ABSTRACT

Aims. ‘Water in Star-forming regions with HerscheT (WISH) is a Herschel Key Program investigating the water chemistry in young stellar objects 
(YSOs) during protostellar evolution. Hydroxyl (OH) is one of the reactants in the chemical network most closely linked to the formation and 
destruction of H20 . High-temperature {T > 250 K) chemistry connects OH and H20  through the OH + H2 <=> H20  + H reactions. Formation 
of H20  from OH is efficient in the high-temperature regime found in shocks and the innermost part of protostellar envelopes. Moreover, in the 
presence of UV photons, OH can be produced from the photo-dissociation of H20  through H20  + yuv => OH + H.
Methods. High-resolution spectroscopy of the 163.12 /mi triplet of OH towards HH 46 and NGC 1333 IRAS 2A was carried out with the 
Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory. The low- and intermediate-mass protostars HH 46, 
TMR 1, IRAS 15398-3359, DK Cha, NGC 7129 FIRS 2, and NGC 1333 IRAS 2A were'observed with the Photodetector Array Camera and 
Spectrometer (PACS) on Herschel in four transitions of OH and two [Oi] lines.
Results. The OH transitions at 79, 84,119, and 163 /mi and [O i] emission at 63 and 145 /mi were detected with PACS towards the class I low-mass 
YSOs as well as the intermediate-mass and class I Herbig Ae sources. No OH emission was detected from the class 0 YSO NGC 1333 IRAS 2A, 
though the 119 /mi was detected in absorption. With HIFI, the 163.12 /mi was not detected from HH 46 and only tentatively detected from 
NGC 1333 IRAS 2A. The combination of the PACS and HIFI results for HH 46 constrains the line width (FWHM >11 km s~*) and indicates 
that the OH emission likely originates from shocked gas. This scenario is supported by trends of the OH flux increasing with the [O i] flux and the 
bolometric luminosity, as found in our sample. Similar OH line ratios for most sources suggest that OH has comparable excitation temperatures 
despite the different physical properties of the sources.

Key words. Astrochemistry — Stars: formation — ISM: molecules — ISM: jets and outflows — ISM: individual objects: HH 46

1. Introduction

The hydroxyl radical (OH) is a cornerstone species of the oxy
gen chemistry in dense clouds and is particularly important in 
the chemical reaction network of water. H20  and OH are closely 
linked through the OH + H2 <=> H20  + H reactions. The for
mation path of H20  from OH is efficient at the high tempera
tures found in shocks or in the innermost parts of circumstellar 
envelopes (Kaufman & Neufeld 1996; Chamley 1997). Below 
about 250 K, standard gas-phase chemistry applies, in which 
H20  is formed and destroyed through ion-molecule reactions. 
In regions not completely shielded from UV radiation, photo
dissociation becomes a major destruction path of H20 , leaving

* Herschel is an ESA space observatory with science instruments 
provided by European-led Principal Investigator consortia and with im
portant participation from NASA.

OH as a byproduct. A better understanding of the OH emission 
will therefore help to constrain the water chemistry.

The observation of far-infrared (FIR) rotational OH lines by 
ground based facilities is severely limited by the Earth’s atmo
sphere. Previous studies of OH FIR emission with the Infrared 
Space Observatory (ISO) showed that OH is one of the major 
molecular coolants in star-forming regions (e.g. Giannini et al. 
2001). However, with a large beam of 80", ISO was unable to 
resolve the central source from the outflows, preventing an as
sessment of the origin of the OH emission. Interpretation of the 
ISO OH measurements thus relied mostly on the assumption that 
the OH emission arises from gas with the same temperature and 
density as the liigh-J CO FIR emission (e.g. Nisini et al. 1999; 
Ceccarelli et al. 1998). The Herschel Space Observatory permits 
observations of OH FIR transitions at both higher angular and 
spectral resolution and at higher sensitivity than ISO.
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Observations of H20 , OH and related species towards a large 
set of young stellar objects over a wide range of luminosities 
and masses are being carried out in the ‘Water In Star-forming 
regions with Herschef (WISH) key program to trace the water 
chemistry during protostellar evolution (van Dishoeck et al. in 
prep). OH emission at 163.12 /an (1837.8 GHz) was detected 
with PACS towards the class I YSO HH 46 (van Kempen et al. 
2010b), but the triplet, split by 90 MHz, could not be resolved. 
Based on modeling results, the OH emission was attributed to 
a J -type shock and not to the quiescent envelope. We carried 
out high-resolution spectroscopy with HIFI to test whether the 
detected OH emission is dominated by shock contribution by 
resolving the line profiles. This paper presents the HIFI observa
tions inHH 46 as well as the class 0 object NGC 1333 IRAS 2A. 
New PACS observations of OH and [Oi] are reported for the 
low-mass protostars IRAS 15398-3359, NGC 1333 IRAS 2A, 
and TMR 1.

2. Observations and data reduction

Because of spin-orbit interaction, the OH rotational levels are 
built within two ladders, 2IL /2 and 2IIi/2 (Offer & van Dishoeck
1992). Each level is further split by A doubling and hyperfine 
structure. A level diagram can be found in Fig. B .l in the ap
pendix. We use the molecular data from the Leiden atomic and 
molecular database LAMDA 1 (Schöier et al. 2005).

High-resolution observations of the OH triplet at 163.12 /an 
(1837.747, 1837.817 and 1837.837 GHz) were performed 
with the Heterodyne Instrument for the Far-Infrared (HIFI, 
De Graauw et al. 2010) on board the ESA Herschel Space 
Observatory (Pilbratt et al. 2010) towards HH 46 and 
NGC 1333 IRAS 2A. HIFI data were stitched together using the 
Herschel Interactive Processing Enviromnent (HIPE v3.0.1, Ott 
2010) and further analyzed using GILDAS-CLASS2 software. 
We removed standing waves after the subtraction of a low-order 
polynomial and calibrated to Tmb scale using a main beam effi
ciency of 0.74. The H and V polarizations were combined.

HH 46, TMR 1, IRAS 15398-3359, and NGC 7129 FIRS 2 
were observed with PACS (Poglitsch et al. 2010) in line spec
troscopy mode around four OH doublets at 79, 84, 119, and 
163 /an. The [Oi] 63 and 145.5 /an lines were also observed 
except for TMR 1. Each segment at A < 100 /an and A > 
100 /an covers 1 and 2/an at R ~ 3000 and R  ~ 1500, 
respectively. In addition, DK Cha and NGC 1333 IRAS 2A 
were observed with PACS from 55-210 /an at R ~ 1000 
in range spectroscopy mode. Details of the PACS observa
tions of HH 46, NGC 7129 FIRS 2, and DK Cha are de
scribed in van Kempen et al. (2010b), Fichetal. (2010), and 
van Kempen et al. (2010a), respectively. All spectra were re
duced with HIPE v2.9. PACS spectra are recorded in a 5 x 5 
array of 9'/4 square spatial pixels (spaxels). The observations of 
IRAS 15398-3359, TMR 1, NGC1333 IRAS 2A, and DK Cha 
were mispointed sufficiently in a way that the peak of the con
tinuum emission differs from the central spaxel.

The line and continuum emission seen by PACS is spatially 
extended in most cases. Spectra were extracted from the spax
els that include OH emission. The wavelength-dependent point- 
spread function was roughly corrected by comparing the amount 
of continuum emission in the summed spaxels to that in the 
total array. Most integrated line intensities were derived from 
Gaussian fits to the unresolved lines. In a few cases, the OH

1 http://www.strw.leidenuniv.nl/~moldata/
2 http://www.iram.fr/IRAMFR/GILDAS

Fig. 1. HIFI spectrum at 163.12 /an (1837.8 GHz) towards the 
low-mass YSO HH 46 ( i'isr = 5.2 km s_1). OH lines were not 
detected in 34 min of on source integration time (polarizations 
combined).

doublets could not be resolved and the intensities were then 
derived by simple integration over the spectrum. The absolute 
flux calibration below and above 100 /an was separately deter
mined from in-flight observations of (point) calibration sources. 
The relative spectral response function within each band was 
determined from ground calibration prior to launch. The uncer
tainty in absolute and relative fluxes is estimated to be 30-50%. 
Additional details on the observations can be found in the ap
pendix.

3. Results

HIFI did not detect the 163.12 /an OH hyperfine triplet at the 
noise level of '/nTls ~ 70 mK on Tmb scale for the nominal WBS 
resolution of about 1.1 MHz (0.163 km s_1). The spectrum is 
presented in Fig. 1. Combining the HIFI and PACS observations 
constrains the line width (see Sect. 4).

PACS detected OH emission at 79,84,119, and 163 /an to
wards the class I sources HH 46, TMR 1 and IRAS 15398- 
3359 as well as the class I Herbig Ae star DK Cha and the 
intermediate-mass source NGC 7129 FIRS 2 (Fig. 2). An ex
ception is the 163.40 /an line of HH 46, where we only have an 
upper limit because of the uncertain baseline towards the end of 
the spectral window where the line is located. The [O i] 63 /an 
and 145 /an lines were also detected. An overview of the results 
is given in Table 1. The 1 cr errors listed in Table 1 do not include 
the systematic error of 30-50% from uncertainty in the calibra
tion. Because of blending with CO(31-30), the 84.42 /an doublet 
component of OH is not listed. For the analysis, we assumed the 
flux to be identical to the 84.60 /an OH flux because all observed 
doublets show comparable fluxes of the components within the 
calibration uncertainty.

The only class 0 YSO in the sample, NGC 1333 IRAS 2A, 
is fundamentally different from all other sources in the sample. 
The OH 119 /an doublet is seen in absorption, with an equivalent 
width of about 7.5 km s_1 for each component. No other OH 
lines were detected at the noise level obtained after removal of 
the fringing effects. However, the upper limits are larger than the 
fluxes detected from the class I sources. On the other hand, the 
upper limit on the [O i] 63 /an emission is at least a factor of four 
lower than the weakest [O i] 63 /an line found in our sample.

2

http://www.strw.leidenuniv.nl/~moldata/
http://www.iram.fr/IRAMFR/GILDAS


S.F. Wampfler et al.: Herschel hydroxyl observations of YSOs

Table 1. OH and [O i] line fluxes observed with PACS.

HH 46 TMR 1 IRAS 15398 DK Cha NGC 7129 N 1333 I2A
Transition A V -Eup Flux Flux Flux Flux Flux Flux

[/on] [GHz] [ K ] [K r18 W rrT2] [ K r18 W rrT2] [K r 18 W rrT2] [K r18 W rrT2] [K r18 W rrT2] [K r18 W rrT2]T- T _rr  rr  rr  rr  rr
oh î ; I -

[ O ip P i - 3
[ O i] 3Po- 3

OH
OH
OH
OH
OH
OH

'V I
T I
11
11
11
11 

2 ’ 2 
P2 
P2

79.12
79.18 
84.60

119.23
119.44
163.12
163.40
63.18 

145.53

3789.3
3786.3
3543.8
2514.3
2510.0
1837.8
1834.7
4744.8
2060.1

181.9
181.7
290.5
120.7
120.5 
270.1
269.8 
227.7
326.6

55 ± 7 
38 ± 5 
87 ± 6  
38 ± 9 
44 ± 7 
22 ± 4 

<27
1260 ± 5 4  

82 ± 8

128 ± 14 
102 ± 14 
170 ± 18 

83 ± 10 
101 ± 11 
56 ± 8 
55 ± 7

194 ± 2 9 a
a

93 ± 16
121 ± 17 
130 ± 17
47 ± 9 
54 ± 10 

1958 ± 197
122 ± 17

360 ± 87
315 ± 58
347 ± 48

95 ± 5 0 a
a

170 ± 60 a
a

3128 ± 333 
170 ± 72

229 ± 33
230 ± 39 
181 ± 28 
132 ± 39 
134 ± 59 
116 ± 45
69 ± 26 

1219 ± 130
104 ± 35

<350

<165
absorption
absorption

<100

<320
<180

a Doublet not resolved. Table lists the integrated flux over both components.

4. Analysis

To constrain the line width of the 163.12 /an OH triplet from 
HH 46, the HIFI non-detection is combined with the flux 
(22 X 10“18 W m-2) of the unresolved lines measured with the 
high-sensitivity PACS instrument. The expected integrated in
tensity for HIFI is ~ 1.1 K km s_1 for the triplet in total, as 
calculated from the PACS observation. This value was derived 
for a 13" beam under the assumption that the source is unre
solved, because the OH emission from HH 46 appears to be cen
trally concentrated (van Kempen et al. 2010b). Assuming LTE 
ratios (~ /1LI|,«u) for the three components, the strongest transi
tion has an integrated intensity of 0.66 K km s_1. An upper limit 
on the integrated intensity is calculated from the HIFI observa
tion using cr = 1.3 y/övA vTims with dv the velocity resolution, 
A V the expected line width and an assumed 30 % calibration 
uncertainty. Rebinning the spectrum to a resolution of 16 MHz 
(2.6 km s“1 ) yields an nns of 31 inK and would therefore allow 
5cr (3(x) detections for Gaussian lines with FWHM < 4 km s_1 
(FWHM < l l k m s  1 ). From the non-detection we conclude that 
the flux observed with PACS is likely to be emitted from lines 
with FWHM > 1 1  km s-1. For comparison, the FWHM of the 
H20  1 in -  loi transition derived from recent unpublished HIFI 
observations is about 16 km s_1. The CO(6-5) and CO(7-6) lines 
observed with APEX by van Kempen et al. (2009) are narrower. 
In a similar HIFI observation, OH emission was tentatively de

tected below the 5cr level for the strongest triplet component in 
NGC 1333 IRAS 2A, in agreement with the upper limits on OH 
emission in the PACS observation of the same source. Given the 
uncertain baseline, this needs to be treated with caution.

Figure 3 compares the OH fluxes from YSOs as measured 
here with PACS and in ISO observations of two additional 
sources, Ser SMM1 (Larsson et al. 2002) and NGC 1333 IRAS 4 
(Giannini et al. 2001). Despite the wide range of luminosities 
and masses covered in our sample, the sources show surprisingly 
similar characteristics in terms of their OH emission: the OH 
84 /an doublet is generally the strongest of the four, while the 
integrated intensity of the weakest doublet at 163 /an is roughly 
a factor of three lower. The 119 /an flux can vary compared 
to higher excitation lines because this line, which is connected 
to the ground state level, becomes more easily optically thick. 
It can also be affected by absorption against the continuum by 
cold gas layers lying in front of the source. The 79 /an doublet 
links the lowest energy states of both rotational ladders, but be
cause of the smaller Einstein A coefficients of the cross-ladder 
transitions, these lines are less affected by optical depth than the 
119 /an lines. The 79 /an fluxes are lower than those at 84 /an 
for most sources, but higher than at 119 /an.

1 1

1 ;

: 1 1 : 
: 1 1 :

: 1 1 : 
: 1 1 : 

1 1

I I 

NGC 7129

y r V J| ^
TMR 1 

IRAS15398 

HH46 I

79.0 79.2 84.4 84.6 119.1 119.5 163.1 163.4

II ;

i1 1
rh I I ^J:|_DK Cha

;

7 9 .0  7 9 .5  8 4 .2  8 4 .8  1 19 .0  1 2 0 .0  1 6 3 .0  164 .0

W a v e le n g th  [/im]

Fig. 2. PACS spectra of the observed OH doublets at 79, 84,119, 
and 163 /an. Sources in the top panel were observed in line spec
troscopy mode, those in the lower panel in range spectroscopy 
mode (different sampling). Dashed vertical lines indicate the OH 
frequencies, dotted lines show the position of CO lines.

U pper Level Energy Eup [K]

Fig. 3. Observed OH line fluxes from PACS plotted versus 
the upper level energy of the transition. Ser SMM 1 and 
NGC 1333 IRAS 4 measured with ISO are included for com
parison. Symbols correspond to different OH transitions: 79 /an 
as diamond, 84 /an as triangle, 119 /an as circle, and 163 /an 
as square. Fluxes of the doublet components are summed. The 
84.60 /an flux multiplied by two is used for the 84 /an doublet 
because the 84.42 /an line is blended with CO(31-30).
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1 0 ° 1 0 ' 1 0 2 1 0 3 

B olom etric Lum inosity Lbo, [L©] [OI] Flux [ 1 0 " 1B W m "2]

Fig. 4. Dependence of OH line luminosity on the bolometric lu
minosity of the source. Symbols and colors as in Fig. 3.

Flux ratios of the observed OH lines were calculated from 
the summed doublet components to compare the excitation of 
the involved energy levels among the sources. The line ratios 
of different sources agree within a factor of two except when 
the 119 /mi transition is involved (Fig. C. 1 in the appendix) and 
are consistent with the results from ISO observations from the 
class 0 sources NGC 1333 IRAS 4 and Ser SMM1.

Emission in the 84 /an transition, which has Eup/kB ~ 300 K, 
indicates that OH is tracing the wann (T  > 100 K) and dense 
(n > 105 cm-3) gas in our sources. Modeling results show that 
transitions in the 2n 3/2 ladder are mostly excited by collisions 
while the population of the 2IIi/2 levels is dominated by radia
tive pumping via the cross-ladder transitions. The weak 163 /an 
lines and emission at 79 /an indicate that FIR pumping is less 
important than collisional excitation in our sources.

Figure 4 shows the trend of stronger OH emission with in
creasing bolometric source luminosity /,h„ found in our source 
sample. We calculated the OH line luminosity Zoh individu
ally for each transition and source from the observed fluxes and 
found indications that the differences between the sources may 
depend on the individual Zboi- The correlation between /.on and 
/,h,: is reminiscent of that found for the CO outflow force with 
luminosity (Bontemps et al. 1996). The latter relation was taken 
as evidence that more massive envelopes have higher accretion 
rates and thus drive more powerful outflows, van Kempen et al. 
(2010b) speculate that the OH emission originates in the wake of 
the jet impinging on the dense, inner parts of the envelope, cre
ating dissociative shocks in which [O i] is the dominant coolant, 
followed by OH (Neufeld & Dalgamo 1989). The relation be
tween OH emission and luminosity supports this scenario.

Comparison of OH with [O i] emission shows that stronger 
OH emission coincides with higher [Oi] intensities (Fig. 5) 
and also with increasing [Oi] 63/145 /an line flux ratios. For 
HH 46, TMR 1, and NGC 7129 FIRS 2, the bulk of the [Oi] 
and OH emission comes from close to the protostar where den
sities are on the order of 105 cm-3 or higher, as illustrated by 
the lack of extended OH emission in HH 46 (van Kempen et al. 
2010b). Some spatially extended OH emission is detected from 
IRAS 15398-3359 and DK Cha, and is highly correlated with 
the spatial extent of [O i] emission. The correlation between the 
intensities (Fig. 5) suggests that the bulk of [Oi] and OH emis
sion originates in the same physical component in all sources. 
This argument, together with the OH -  /,hri and O H -[O i] 
relations, supports the dissociative shock scenario. The [Oi] 
63/an / 145/an line ratios are in the range of 13-19, also con
sistent with fast, dissociative J-type shocks (v > 60 km s_1, 
Neufeld & Dalgamo 1989). Note that an OH -  [Oi] relation can

Fig. 5. Observed OH fluxes plotted against [O i] 63 /an flux (left 
panel) and 145 /an flux (right panel). Symbols and colors as in 
Fig. 3.

also be indicative of photo-dissociation, as argued for Sgr B2 by 
Goicoechea et al. (2004). Models of photon-dominated regions 
(Kaufmanet al. 1999) predict similar [Oi] 63/an / 145/an line 
ratios, but those require n < 105 cm-3, which is inconsistent 
with an origin in the inner, dense envelope.

5. Conclusions

The OH hyperfine transition triplet at 163.12 /an (1837.8 GHz) 
was not detected above the noise level obtained with HIFI. 
Combined with the flux derived from the unresolved line 
observed with PACS, this constrains the line width to 
FWHM >11 km s 1. This width is much broader than expected 
for the quiescent envelope from ground-based observations 
(van Kempen et al. 2009) and indicates that the observed OH 
emission most likely stems from shocked gas in HH 46.

/ Icrschcl PACS observations of OH lines at 79,84,119, and 
163 /an have been carried out for four low-mass YSOs, one 
intermediate-mass protostar and one class I Herbig Ae object. 
OH emission is detected in all sources except the class 0 YSO 
NGC 1333 IRAS 2A, where the OH 119 /an transitions are ob
served in absorption and only upper limits can be derived for 
the other lines. Sources with detected OH emission show sur
prisingly similar OH line ratios despite the large ranges of phys
ical properties covered in this study, suggesting that OH emis
sion might arise from gas at similar conditions in all sources. 
Furthermore, we find trends of correlations between OH inte
grated intensities and [O i] emission as well as bolometric lu
minosity, consistent with an origin in the wake of dissociative 
shocks. Given the low number of sources in the sample, confir
mation from additional observations is needed.

Further OH observations and modeling should eventually al
low the determination of the 0H/H20  abundance ratio in shocks, 
which traces the UV field through its dependence on the fraction 
of atomic to molecular hydrogen.
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Appendix A: Observational details

Table A.1 lists the coordinates, observing dates, and the obser
vation identity numbers of our sources along with the assumed 
distance, the bolometric luminosity, the envelope mass and the 
source type. For comparison, Ser SMM1 and n Gc  1333 IRAS 4 
observed with ISO are included as well. For Ser SMM1, we 
use the average values of the fluxes presented by Larsson et al. 
(2002). The data for NGC 1333 IRAS 4 are taken from 
Giannini et al. (2001). Note that for NGC 1333 IRAS 4, we use 
the luminosity and mass of NGC 1333 IRAS 4A.
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Table A .l. Source properties and observational details.

Source Distance
[pc]

Luminosity
[Lo]

Envelope Mass 
[Mo]

Type RA Dec 
[hm s] r  "]

Obs. Date Obs.id

HH 46 45 0a 16 b 5.1 b Class I 08:25:43.9 -51:00:36 2009-10-26 1342186315 (PACS)
2010-04-17 1342194783 (HIFI)

TMR 1 140e 3.7 11 0.12e Class I 04:39:13.7 +25:53:21 2010-03-29 1342192984 (PACS)
IRAS 15398-3359 130f 0.92« 0.5 h Class I 15:43:01.3 -34:09:15 2010-02-27 1342191302 (PACS)
DK Cha

COO

29.4 J 0.03> Herbig Ae 12:53:17.2 -77:07:10.6 2009-12-10 1342188039 (PACS)
2009-12-10 1342188040 (PACS)

NGC 7129 FIRS 2 1260k 500 1 50 111 Intermed.-Mass 21:43:01.7 +66:03:23.6 2009-10-26 1342186321 (PACS)
NGC 1333 I2A 235n 20 0 1.0 0 Class 0 03:28:55.6 +31:14:37 2010-02-13 1342190686 (PACS)

2010-02-24 1342191149 (PACS)
2010-03-08 1342191773 (HIFI)

Serpens SMM1 415P 82.9 ’ 8.7 q Class 0 - ISOr
NGC 1333 14 235n 5.8 0 4.5 0 Class 0 - ISO5

a Heathcote, S., Morse, J. A., Hartigan, P., et al. 1996, AJ, 112, 1141
b van Kempen, T. A., van Dishoeck, E. F., Güsten, R. et al. 2009, A&A, 501, 633
c Motte, F., Andre, P., & Neri, R. 1998, A&A, 336, 150
d Ohashi, N., Hayashi, M., Kawabe, R. et al. 1996, ApJ, 466, 317
e Jargensen, J. K., Schöier, F.L., & van Dishoeck, E.F. 2002, A&A, 389, 908
f Murphy, D. C., Cohen, R., & May, J. 1986, A&A, 167, 234
g Froebrich, D. 2005, ApJS, 156, 169
h van Kempen, T. A., van Dishoeck, E. F., Hogerheijde, M. R. et al., 2009, A&A, 508, 259
‘ Whittet, D. C. B., Prusti, T., Franco, G. A. P., et al. 1997, A&A, 327, 1194
J van Kempen, T. A., Green, J. D., Evans, N. J. et al. A&A, 2010, accepted
k Shevchenko, V.S. and Yakubov, S.D. 1989, SvA, 33, 370
I Johnstone, D., Fich, M., McCoey, C. et al. 2010, this volume

111 Crimier, N., Ceccarelli, C., Alonso-Albi, T. et al. 2010, arxiv 1005.0947
II Hirota, T., Bushimata, T., Choi, Y. K., et al. 2008, PASJ, 60, 37
0 Jetrgensen, J. K., van Dishoeck, E. F., Visser, R., et al. 2009, A&A, 507, 861
p Dzib, S., Loinard, L., Mioduszewski, A.J., et al. 2010, ApJ, in press, arXivl003.5900
q Hogerheijde, M. R., van Dishoeck, E. F., Salverda, J. M. et al., ApJ, 513, 350 (Zb0i scaled to a distance of 415 pc)
r Larsson, B., Liseau, R. & Men’shchikov, A.B. 2002, A&A, 386, 1055
s Giannini, T., Nisini, B. &Lorenzetti, D. 2001, ApJ, 555, 40
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Fig. B.l. Level diagram of the lowest excited states of OH up 
to /:up ~ 300 K. Splitting of the levels because of A-doubling 
and hyperfine structure is not to scale. Transitions observed with 
PACS are shown in green, the high-resolution observations of 
the hyperfine transitions carried out with HIFI in red.

Appendix C: OH line ratios

Fig. C.l. Ratios of the observed OH fluxes. The numbers de
note the corresponding wavelengths. The symbols are: circle 
for HH 46, upward triangle for TMR 1, downward triangle 
for IRAS 15398-3359, squares for NGC 7129 FIRS 2, plus 
signs for DK Cha, crosses for Ser SMM1 and diamonds for 
NGC 1333 IRAS 4. The color coding is the same as in Fig. 3.


