418 research outputs found

    A note on the relationship between grid structure and metrical structure in Banawá

    Get PDF
    The stress system of Banawa ́, an endangered Arawan language spoken in the Brazilian Amazon, constitutes a puzzling case study for metrical phonology. It has been claimed that its metrical representations violate the Syllable Integrity Principle (1) (Buller, Buller, and Everett (BBE) 1993, Everett 1996, 1997), one of the core universal principles in standard metrical theory, which bans representations where a foot dis- sects a heavy syllable (e.g., *(CV.CV ́ )(V.CV ́ ), *(CV ́ .CV)(V ́ .CV), where periods indicate syllable boundaries and parentheses, foot edges)

    CALCIUM RESPONSES IN FIBROBLASTS FROM ASYMPTOMATIC MEMBERS OF ALZHEIMER'S DISEASE FAMILIES

    Get PDF
    Abstract We have previously identified alterations of K + channel function, IP 3 -mediated calcium release, and Cp20 (a memory-associated GTP binding protein) in fibroblasts from Alzheimer's disease (AD) patients vs controls. Some of these alterations can be integrated into an index that distinguishes AD patients from controls with both high specificity and high sensitivity. We report here that alterations in IP 3 -mediated calcium responses are present in a large proportion of AD family members (i.e., individuals at high risk) before clinical symptoms of Alzheimer's disease are present. This was not the case if such members later "escaped" AD symptoms. This preclinical calcium signal correlate of later AD does not reflect, however, the presence of the PS1 familial AD gene

    Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease.

    Get PDF
    Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease-associated bacterial isolates (Histophilus somni, Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni, M. haemolytica, and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% (P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease treatment and morbidity/mortality outcomes

    Development of Autonomous Aerobraking (Phase 1)

    Get PDF
    The NASA Engineering and Safety Center received a request from Mr. Daniel Murri (NASA Technical Fellow for Flight Mechanics) to develop an autonomous aerobraking capability. An initial evaluation for all phases of this assessment was approved to proceed at the NESC Review Board meeting. The purpose of phase 1 of this study was to provide an assessment of the feasibility of autonomous aerobraking. During this phase, atmospheric, aerodynamic, and thermal models for a representative spacecraft were developed for both the onboard algorithm known as Autonomous Aerobraking Development Software, and a ground-based "truth" simulation developed for testing purposes. The results of the phase 1 assessment are included in this report

    Autonomous Aerobraking Development Software: Phase 2 Summary

    Get PDF
    NASA has used aerobraking at Mars and Venus to reduce the fuel required to deliver a spacecraft into a desired orbit compared to an all-propulsive solution. Although aerobraking reduces the propellant, it does so at the expense of mission duration, large staff, and DSN coverage. These factors make aerobraking a significant cost element in the mission design. By moving on-board the current ground-based tasks of ephemeris determination, atmospheric density estimation, and maneuver sizing and execution, a flight project would realize significant cost savings. The NASA Engineering and Safety Center (NESC) sponsored Phase 1 and 2 of the Autonomous Aerobraking Development Software (AADS) study, which demonstrated the initial feasibility of moving these current ground-based functions to the spacecraft. This paper highlights key state-of-the-art advancements made in the Phase 2 effort to verify that the AADS algorithms are accurate, robust and ready to be considered for application on future missions that utilize aerobraking. The advancements discussed herein include both model updates and simulation and benchmark testing. Rigorous testing using observed flight atmospheres, operational environments and statistical analysis characterized the AADS operability in a perturbed environment

    An Intersectional Approach to Equity, Inequity, and Archaeology

    Get PDF
    The year 2020 was an awakening for some. For others, it reiterated the persistent social injustice in the United States. Compelled by these events, 30 diverse individuals came together from January to May 2021 for a semester-long seminar exploring inequity in archaeological practice. The seminar's discussions spotlighted the inequity and social injustices that are deeply embedded within the discipline. However, inequity in archaeology is often ignored or treated narrowly as discrete, if loosely bound, problems. A broad approach to inequity in archaeology revealed injustice to be intersectional, with compounding effects. Through the overarching themes of individual, community, theory, and practice, we (a subset of the seminar's participants) explore inequity and its role in various facets of archaeology, including North-South relations, publication, resource distribution, class differences, accessibility, inclusive theories, service to nonarchaeological communities, fieldwork, mentorship, and more. We focus on creating a roadmap for understanding the intersectionality of issues of inequity and suggesting avenues for continued education and direct engagement. We argue that community-building - by providing mutual support and building alliances - provides a pathway for realizing greater equity in our discipline.Fil: Rivera Prince, Jordi A.. University of Florida; Estados UnidosFil: Blackwood, Emily M.. University of Maine; Estados UnidosFil: Brough, Jason A.. University of Maine; Estados UnidosFil: Landázuri, Heather A.. University of Maine; Estados UnidosFil: Leclerc, Elizabeth L.. University of Maine; Estados UnidosFil: Barnes, Monica. American Museum of Natural History; Estados UnidosFil: Brasil, Kareen Kristina. Columbia University; Estados UnidosFil: Gutierrez, Maria Amelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Investigaciones Arqueológicas y Paleontológicas del Cuaternario Pampeano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Investigaciones Arqueológicas y Paleontológicas del Cuaternario Pampeano; ArgentinaFil: Herr, Sarah. Desert Archaeology, Inc.; MéxicoFil: Maasch, Kirk A.. University of Maine; Estados UnidosFil: Sandweiss, Daniel H.. University of Maine; Estados Unido

    The Phoenix Mars Landing: An Initial Look

    Get PDF
    This presentation was part of the session : Ongoing and Proposed EDL Technology DevelopmentSixth International Planetary Probe WorkshopNASA's Phoenix Mars Lander will make a landing on Mars on May 25th, 2008. Following on from the overview of the Phoenix entry, descent and landing (EDL) system given at IPPW5, an initial look at the Phoenix landing will be presented, highlighting the salient, high level events that occurred during EDL. Initial EDL flight reconstruction results will be presented, along with a retelling of the flight operations events that occurred on approach to Mars, and during the landing event itself. Note: Given the short time duration between the Phoenix landing and IPPW6, only a presentation will be prepared for the workshop.NAS

    MODEM: a comprehensive approach to modelling outcome and costs impacts of interventions for dementia. Protocol paper

    Get PDF
    Background The MODEM project (A comprehensive approach to MODelling outcome and costs impacts of interventions for DEMentia) explores how changes in arrangements for the future treatment and care of people living with dementia, and support for family and other unpaid carers, could result in better outcomes and more efficient use of resources. Methods MODEM starts with a systematic mapping of the literature on effective and (potentially) cost-effective interventions in dementia care. Those findings, as well as data from a cohort, will then be used to model the quality of life and cost impacts of making these evidence-based interventions more widely available in England over the period from now to 2040. Modelling will use a suite of models, combining microsimulation and macrosimulation methods, modelling the costs and outcomes of care, both for an individual over the life-course from the point of dementia diagnosis, and for individuals and England as a whole in a particular year. Project outputs will include an online Dementia Evidence Toolkit, making evidence summaries and a literature database available free to anyone, papers in academic journals and other written outputs, and a MODEM Legacy Model, which will enable local commissioners of services to apply the model to their own populations. Discussion Modelling the effects of evidence-based cost-effective interventions and making this information widely available has the potential to improve the health and quality of life both of people with dementia and their carers, while ensuring that resources are used efficiently

    An Accreting White Dwarf near the Chandrasekhar Limit in the Andromeda Galaxy

    Get PDF
    The iPTF (Intermediate Palomar Transient Factory) detection of the most recent outburst of the recurrent nova system RX J0045.4+4154 in the Andromeda Galaxy has enabled the unprecedented study of a massive (mass is greater than 1.3 solar masses) accreting white dwarf (WD). We detected this nova as part of the near daily iPTF monitoring of M31 to a depth of R (red band-pass filter) approximately equal to magnitude 21 and triggered optical photometry, spectroscopy and soft X-ray monitoring of the outburst. Peaking at an absolute magnitude of MR (red, mid-infrared band-pass filter) equals magnitude 6.6, and with a decay time of 1 magnitude per day, it is a faint and very fast nova. It shows optical emission lines of He/N and expansion velocities of 1900 to 2600 kilometers per second 1-4 days after the optical peak. The Swift monitoring of the X-ray evolution revealed a supersoft source (SSS) with kT (energy: Boltzmann constant times temperature) (sub eff (effective)) approximately equal to 90-110 electronvolts that appeared within 5 days after the optical peak, and lasted only 12 days. Most remarkably, this is not the first event from this system, rather it is a recurrent nova with a time between outbursts of approximately 1 year, the shortest known. Recurrent X-ray emission from this binary was detected by ROSAT in 1992 and 1993, and the source was well characterized as a mass greater than 1.3 solar masses WD SSS. Based on the observed recurrence time between different outbursts, the duration and effective temperature of the SS phase, MESA models of accreting WDs allow us to constrain the accretion rate to mass greater than 1.7x10 (sup 7) solar masses per year and WD mass greater than 1.30 solar masses. If the WD keeps 30 percent of the accreted material, it will take less than a million years to reach core densities high enough for carbon ignition (if made of C/O) or electron capture (if made of O/Ne) to end the binary evolution

    Roadmap of ultrafast x-ray atomic and molecular physics

    Get PDF
    X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm−2) of x-rays at wavelengths down to ~1 Angstrom, and HHG provides unprecedented time resolution (∼50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ∼280 eV (44 Angstroms) and the bond length in methane of ∼1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science
    corecore