18 research outputs found

    Longitudinal changes of ADHD symptoms in association with white matter microstructure: A tract-specific fixel-based analysis

    Get PDF
    Background: Variation in the longitudinal course of childhood attention deficit/hyperactivity disorder (ADHD) coincides with neurodevelopmental maturation of brain structure and function. Prior work has attempted to determine how alterations in white matter (WM) relate to changes in symptom severity, but much of that work has been done in smaller cross-sectional samples using voxel-based analyses. Using standard diffusion-weighted imaging (DWI) methods, we previously showed WM alterations were associated with ADHD symptom remission over time in a longitudinal sample of probands, siblings, and unaffected individuals. Here, we extend this work by further assessing the nature of these changes in WM microstructure by including an additional follow-up measurement (aged 18 – 34 years), and using the more physiologically informative fixel-based analysis (FBA). Methods: Data were obtained from 139 participants over 3 clinical and 2 follow-up DWI waves, and analyzed using FBA in regions-of-interest based on prior findings. We replicated previously reported significant models and extended them by adding another time-point, testing whether changes in combined ADHD and hyperactivity-impulsivity (HI) continuous symptom scores are associated with fixel metrics at follow-up. Results: Clinical improvement in HI symptoms over time was associated with more fiber density at follow-up in the left corticospinal tract (lCST) (tmax = 1.092, standardized effect[SE] = 0.044, pFWE = 0.016). Improvement in combined ADHD symptoms over time was associated with more fiber cross-section at follow-up in the lCST (tmax = 3.775, SE = 0.051, pFWE = 0.019). Conclusions: Aberrant white matter development involves both lCST micro- and macrostructural alterations, and its path may be moderated by preceding symptom trajectory

    An Open Resource for Non-human Primate Imaging.

    Get PDF
    Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets

    Associations between sensory processing sensitivity, dispositional mindfulness, and emotion regulation: Evidence from a population-based cohort

    No full text
    We will examine the associations between sensory processing sensitivity, dispositional mindfulness and emotion regulation in an adult population based sample, and investigate whether dispositional mindfulness moderates the associations between sensory processing sensitivity and emotion regulation

    Neural activation in sensory processing sensitivity during naturalistic viewing

    No full text
    How does sensory processing sensitivity relate to neural activation in different environments

    Sensory processing sensitivity associations with mental and somatic health in positive and negative environments: evidence for differential susceptibility

    No full text
    Environmental factors may play a role in how the personality trait sensory processing sensitivity (SPS) relates to different health-related outcomes. To better understand vulnerability and resilience in different environments, we investigated associations of SPS with stress-related and neurodevelopmental disorder traits, well-being, and somatic health in a population-based sample of 252 adults. We then tested SPS interactions with lifetime or current measures of positive or negative environments. Overall, higher SPS related to more burnout, anxiety, depression, stress, health complaints and nonprescription medication use, but not to neurodevelopmental disorder traits. Associations with burnout, anxiety, and health complaints remained after controlling for neuroticism. In unfavorable environments, higher SPS related to worse health while, in favorable environments, it related to better health, supporting the theory of SPS as a factor for differential susceptibility to environments. Our work demonstrates that SPS may be a risk factor for stress-related and somatic symptoms, independent of neuroticism

    White Matter Microstructure in Attention-Deficit/Hyperactivity Disorder: A Systematic Tractography Study in 654 Individuals

    Get PDF
    Background: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by age-inappropriate levels of inattention and/or hyperactivity-impulsivity. ADHD has been related to differences in white matter (WM) microstructure. However, much remains unclear regarding the nature of these WM differences and which clinical aspects of ADHD they reflect. We systematically investigated whether fractional anisotropy (FA) is associated with current and/or lifetime categorical diagnosis, impairment in daily life, and continuous ADHD symptom measures. Methods: Diffusion-weighted imaging data were obtained from 654 participants (322 unaffected, 258 affected, 74 subthreshold; 7–29 years of age). We applied automated global probabilistic tractography on 18 major WM pathways. Linear mixed-effects regression models were used to examine associations of clinical measures with overall brain and tract-specific FA. Results: There were significant interactions of tract with all ADHD variables on FA. There were no significant associations of FA with current or lifetime diagnosis, nor with impairment. Lower FA in the right cingulum angular bundle was associated with higher hyperactivity-impulsivity symptom severity (pfamilywise error = .045). There were no significant effects for other tracts. Conclusions: This is the first time global probabilistic tractography has been applied to an ADHD dataset of this size. We found no evidence for altered FA in association with ADHD diagnosis. Our findings indicate that associations of FA with ADHD are not uniformly distributed across WM tracts. Continuous symptom measures of ADHD may be more sensitive to FA than diagnostic categories. The right cingulum angular bundle in particular may play a role in symptoms of hyperactivity and impulsivity

    Longitudinal changes of ADHD symptoms in association with white matter microstructure: A tract-specific fixel-based analysis

    No full text
    Background: Variation in the longitudinal course of childhood attention deficit/hyperactivity disorder (ADHD) coincides with neurodevelopmental maturation of brain structure and function. Prior work has attempted to determine how alterations in white matter (WM) relate to changes in symptom severity, but much of that work has been done in smaller cross-sectional samples using voxel-based analyses. Using standard diffusion-weighted imaging (DWI) methods, we previously showed WM alterations were associated with ADHD symptom remission over time in a longitudinal sample of probands, siblings, and unaffected individuals. Here, we extend this work by further assessing the nature of these changes in WM microstructure by including an additional follow-up measurement (aged 18 – 34 years), and using the more physiologically informative fixel-based analysis (FBA). Methods: Data were obtained from 139 participants over 3 clinical and 2 follow-up DWI waves, and analyzed using FBA in regions-of-interest based on prior findings. We replicated previously reported significant models and extended them by adding another time-point, testing whether changes in combined ADHD and hyperactivity-impulsivity (HI) continuous symptom scores are associated with fixel metrics at follow-up. Results: Clinical improvement in HI symptoms over time was associated with more fiber density at follow-up in the left corticospinal tract (lCST) (tmax = 1.092, standardized effect[SE] = 0.044, pFWE = 0.016). Improvement in combined ADHD symptoms over time was associated with more fiber cross-section at follow-up in the lCST (tmax = 3.775, SE = 0.051, pFWE = 0.019). Conclusions: Aberrant white matter development involves both lCST micro- and macrostructural alterations, and its path may be moderated by preceding symptom trajectory

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    No full text
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    No full text
    Human brain structure changes throughout the lifespan. Brouwer et al. identified genetic variants that affect rates of brain growth and atrophy. The genes are linked to early brain development and neurodegeneration and suggest involvement of metabolic processes. Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging
    corecore