8 research outputs found

    New validation method for hydrodynamic fjord models applied in the Hardangerfjord, Norway

    Get PDF
    We introduce a new intuitive evaluation method for comparison of fjord model results and current measurements. The approach is tested using high resolution model simulations and measurements in the Hardangerfjord, a large fjord system in Norway with huge aquaculture production. The method is easy to interpret, clearly distinguishes periods with good and poor model performance, and relate them to physical driving forces. This makes it possible to identify potential shortcomings in the models’ representation of physical processes. The applied model mostly performs well in the Hardangerfjord. Good performance often coincides with strong local fjord forcing (i.e. strong winds in the fjord). In periods with poor model performance, internal waves induced by pressure perturbations on the coastal shelf tend to propagate erroneously into the fjord. Stratification biases in coastal waters, connected to the applied model boundary conditions, seems to be an important cause. Demonstrated flexibility of time frame and performance criteria suggests applicability of the validation method for a wide set of geophysical variables in various physical environments.publishedVersio

    Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions

    Get PDF
    Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5–13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation

    New validation method for hydrodynamic fjord models applied in the Hardangerfjord, Norway

    No full text
    We introduce a new intuitive evaluation method for comparison of fjord model results and current measurements. The approach is tested using high resolution model simulations and measurements in the Hardangerfjord, a large fjord system in Norway with huge aquaculture production. The method is easy to interpret, clearly distinguishes periods with good and poor model performance, and relate them to physical driving forces. This makes it possible to identify potential shortcomings in the models’ representation of physical processes. The applied model mostly performs well in the Hardangerfjord. Good performance often coincides with strong local fjord forcing (i.e. strong winds in the fjord). In periods with poor model performance, internal waves induced by pressure perturbations on the coastal shelf tend to propagate erroneously into the fjord. Stratification biases in coastal waters, connected to the applied model boundary conditions, seems to be an important cause. Demonstrated flexibility of time frame and performance criteria suggests applicability of the validation method for a wide set of geophysical variables in various physical environments

    Atmospheric methane evolution the last 40 years [Discussion paper]

    No full text
    Observations at surface sites show an increase in global mean surface methane (CH4) of about 180 parts per billion (ppb) (above 10 %) over the period 1984–2012. Over this period there are large fluctuations in the annual growth rate. In this work, we investigate the atmospheric CH4 evolution over the period 1970–2012 with the Oslo CTM3 global chemical transport model (CTM) in a bottom-up approach. We thoroughly assess data from surface measurement sites in international networks and select a subset suited for comparisons with the output from the CTM. We compare model results and observations to understand causes for both long-term trends and short-term variations. Employing Oslo CTM3 we are able to reproduce the seasonal and year-to-year variations and shifts between years with consecutive growth and stagnation, both at global and regional scales. The overall CH4 trend over the period is reproduced, but for some periods the model fails to reproduce the strength of the growth. The model overestimates the observed growth after 2006 in all regions.This work was funded by the Norwegian Research Council project GAME (Causes and effects of Global and Arctic changes in the Methane budget), grant no. 207587, under the program NORKLIMA, and the EU project ACCESS (Arctic Climate Change Economy and Society). ACCESS received funding from the European Union under grant agreement no. 265863 within the Ocean of Tomorrow call of the European Commission Seventh Framework Programme

    Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    No full text
    We have analysed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), to explore changes in present-day (2000) hydroxyl radical (OH) concentration and methane (CH4) lifetime relative to preindustrial times (1850) and to 1980. A comparison of modeled and observation-derived methane and methyl chloroform lifetimes suggests that the present-day global multimodel mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties. The models consistently simulate higher OH concentrations in the Northern Hemisphere (NH) compared with the Southern Hemisphere (SH) for the present-day (2000; inter-hemispheric ratios of 1.13 to 1.42), in contrast to observation-based approaches which generally indicate higher OH in the SH although uncertainties are large. Evaluation of simulated carbon monoxide (CO) concentrations, the primary sink for OH, against ground-based and satellite observations suggests low biases in the NH that may contribute to the high north–south OH asymmetry in the models. The models vary widely in their regional distribution of present-day OH concentrations (up to 34 %). Despite large regional changes, the multi-model global mean (mass-weighted) OH concentration changes little over the past 150 yr, due to concurrent increases in factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide (NOx) emissions, and UV radiation due to decreases in stratospheric ozone), compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC) emissions). The large inter-model diversity in the sign and magnitude of preindustrial to present-day OH changes (ranging from a decrease of 12.7% to an increase of 14.6 %) indicate that uncertainty remains in our understanding of the long-term trends in OH and methane lifetime. We show that this diversity is largely explained by the different ratio of the change in global mean tropospheric CO and NOx burdens (1CO/1NOx, approximately represents changes in OH sinks versus changes in OH sources) in the models, pointing to a need for better constraints on natural precursor emissions and on the chemical mechanisms in the current generation of chemistry-climate models. For the 1980 to 2000 period, we find that climate warming and a slight increase in mean OH (3.5±2.2 %) leads to a 4.3±1.9% decrease in the methane lifetime. Analysing sensitivity simulations performed by 10 models, we find that preindustrial to presentday climate change decreased the methane lifetime by about four months, representing a negative feedback on the climate system. Further, we analysed attribution experiments performed by a subset of models relative to 2000 conditions with only one precursor at a time set to 1860 levels. We find that global mean OH increased by 46.4±12.2% in response to preindustrial to present-day anthropogenic NOx emission increases, and decreased by 17.3±2.3 %, 7.6±1.5 %, and 3.1±3.0% due to methane burden, and anthropogenic CO, and NMVOC emissions increases, respectively

    Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    No full text
    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410mWm−2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17 %. Three different radiation schemes were used – we find differences in RFs between schemes (for the same ozone fields) of ±10 %. Applying two different tropopause definitions gives differences in RFs of ±3 %. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12 %), nitrogen oxides (31±9 %), carbon monoxide (15±3 %) and non-methane volatile organic compounds (9±2 %); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42mWm−2 DU−1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mWm−2; relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in lightning and stratosphere-to-troposphere transport. Climate change has relatively small impacts on global mean tropospheric ozone RF
    corecore