311 research outputs found

    The Wyoming Survey for H-alpha. I. Initial Results at z ~ 0.16 and 0.24

    Full text link
    The Wyoming Survey for H-alpha, or WySH, is a large-area, ground-based, narrowband imaging survey for H-alpha-emitting galaxies over the latter half of the age of the Universe. The survey spans several square degrees in a set of fields of low Galactic cirrus emission. The observing program focuses on multiple dz~0.02 epochs from z~0.16 to z~0.81 down to a uniform (continuum+line) luminosity at each epoch of ~10^33 W uncorrected for extinction (3sigma for a 3" diameter aperture). First results are presented here for 98+208 galaxies observed over approximately 2 square degrees at redshifts z~0.16 and 0.24, including preliminary luminosity functions at these two epochs. These data clearly show an evolution with lookback time in the volume-averaged cosmic star formation rate. Integrals of Schechter fits to the extinction-corrected H-alpha luminosity functions indicate star formation rates per co-moving volume of 0.009 and 0.014 h_70 M_sun/yr/Mpc^3 at z~0.16 and 0.24, respectively. The formal uncertainties in the Schechter fits, based on this initial subset of the survey, correspond to uncertainties in the cosmic star formation rate density at the >~40% level; the tentative uncertainty due to cosmic variance is 25%, estimated from separately carrying out the analysis on data from the first two fields with substantial datasets.Comment: To appear in the Astronomical Journa

    The ACS Nearby Galaxy Survey Treasury. X. Quantifying the Star Cluster Formation Efficiency of Nearby Dwarf Galaxies

    Full text link
    We study the relationship between the field star formation and cluster formation properties in a large sample of nearby dwarf galaxies. We use optical data from the Hubble Space Telescope and from ground-based telescopes to derive the ages and masses of the young (t_age < 100Myr) cluster sample. Our data provides the first constraints on two proposed relationships between the star formation rate of galaxies and the properties of their cluster systems in the low star formation rate regime. The data show broad agreement with these relationships, but significant galaxy-to-galaxy scatter exists. In part, this scatter can be accounted for by simulating the small number of clusters detected from stochastically sampling the cluster mass function. However, this stochasticity does not fully account for the observed scatter in our data suggesting there may be true variations in the fraction of stars formed in clusters in dwarf galaxies. Comparison of the cluster formation and the brightest cluster in our sample galaxies also provide constraints on cluster destruction models.Comment: 16 pages, 9 figures, Accepted to Ap

    Implementation of environmentally compliant cleaning and insulation bonding for MNASA

    Get PDF
    Historically, many subscale and full-scale rocket motors have employed environmentally and physiologically harmful chemicals during the manufacturing process. This program examines the synergy and interdependency between environmentally acceptable materials for solid rocket motor insulation applications, bonding, corrosion inhibiting, painting, priming, and cleaning, and then implements new materials and processes in subscale motors. Tests have been conducted to eliminate or minimize hazardous chemicals used in the manufacture of modified-NASA materials test motor (MNASA) components and identify alternate materials and/or processes following NASA Operational Environmental Team (NOET) priorities. This presentation describes implementation of high pressure water refurbishment cleaning, aqueous precision cleaning using both Brulin 815 GD and Jettacin, and insulation case bonding using ozone depleting chemical (ODC) compliant primers and adhesives

    Fluorescence resonance energy transfer between organic dyes adsorbed onto nano-clay and Langmuir-Blodgett (LB) films

    Full text link
    In this communication we investigate two dyes N,N' -dioctadecyl thiacyanine perchlorate (NK) and octadecyl rhodamine B chloride (RhB) in Langmuir and Langmuir-Blodgett (LB) films with or with out a synthetic clay laponite. Observed changes in isotherms of RhB in absence and presence of nano-clay platelets indicate the incorporation of clay platelets onto RhB-clay hybrid films. AFM image confirms the incorporation of clay in hybrid films. FRET was observed in clay dispersion and LB films with and without clay. Efficiency of energy transfer was maximum in LB films with clay.Comment: 15 pages 5 figures, 1 tabl

    The Wyoming Survey for H-alpha. III. A Multi-wavelength Look at Attenuation by Dust in Galaxies out to z~0.4

    Full text link
    We report results from the Wyoming Survey for H-alpha (WySH), a comprehensive four-square degree survey to probe the evolution of star-forming galaxies over the latter half of the age of the Universe. We have supplemented the H-alpha data from WySH with infrared data from the Spitzer Wide-area Infrared Extragalactic (SWIRE) Survey and ultraviolet data from the Galaxy Evolution Explorer (GALEX) Deep Imaging Survey. This dataset provides a multi-wavelength look at the evolution of the attenuation by dust, and here we compare a traditional measure of dust attenuation (L(TIR)/L(FUV)) to a diagnostic based on a recently-developed robust star formation rate (SFR) indicator, [H-alpha_obs+24-micron]/H-alpha_obs. With such data over multiple epochs, the evolution in the attenuation by dust with redshift can be assessed. We present results from the ELAIS-N1 and Lockman Hole regions at z~0.16, 0.24, 0.32 and 0.40. While the ensemble averages of both diagnostics are relatively constant from epoch to epoch, each epoch individually exhibits a larger attenuation by dust for higher star formation rates. Hence, an epoch to epoch comparison at a fixed star formation rate suggests a mild decrease in dust attenuation with redshift.Comment: 30 pages, 9 figure

    Use of Anticoagulant Rodenticides in Single-Family Neighborhoods Along an Urban-Wildland Interface in California

    Get PDF
    Urbanization poses many threats for many wildlife species. In addition to habitat loss and fragmentation, non-target wildlife species are vulnerable to poisoning by rodenticides, especially acutely toxic second generation anticoagulant rodenticides (SGARs). Although such poisonings are well documented for birds and mammals worldwide, the pathways by which these widely available compounds reach non-target wildlife have not been adequately studied, particularly in urban landscapes. Long-term studies of wild carnivores in and around Santa Monica Mountains National Recreation Area, a national park north of Los Angeles, have documented \u3e85% exposure to anticoagulant rodenticides among bobcats, coyotes, and mountain lions. To investigate potential mechanisms of transfer of chemicals from residential users of rodenticides to non-target wildlife in the Santa Monica Mountains in Los Angeles County, California, we distributed surveys to residents in two study areas on the north (San Fernando Valley) and south (Bel Air-Hollywood Hills) slopes of these mountains. We assessed knowledge of residents about the environmental effects of rodenticides, and for information about individual application of chemicals. We asked for the same information from pest control operators (PCOs) in both study areas. Forty residents completed the survey in the San Fernando Valley area, and 20 residents completed the survey in Bel Air-Hollywood Hills. Despite the small number of total responses, we documented a number of important findings. Homeowners (as opposed to gardeners or PCOs) were the primary applicators of rodenticides, predominantly SGARs, and awareness of the hazards of secondary poisoning to wildlife was not consistent. Some residents reported improperly applying rodenticides (e.g., exceeding prescribed distances from structures), and in one instance a respondent reported observing dead animals outside after placing poison inside a structure. Improper application of SGARs that ignores label guidelines occurs in neighborhoods along the urban–wildland interface, thereby providing a transmission pathway for chemical rodenticides to reach native wildlife. Moreover, the responses suggest that even on-label use (e.g. placing poisons inside) can create risk for non-target wildlife

    A Critical Assessment of Stellar Mass Measurement Methods

    Get PDF
    In this paper we perform a comprehensive study of the main sources of random and systematic errors in stellar mass measurement for galaxies using their Spectral Energy Distributions (SEDs). We use mock galaxy catalogs with simulated multi-waveband photometry (from U-band to mid-infrared) and known redshift, stellar mass, age and extinction for individual galaxies. Given different parameters affecting stellar mass measurement (photometric S/N ratios, SED fitting errors, systematic effects, the inherent degeneracies and correlated errors), we formulated different simulated galaxy catalogs to quantify these effects individually. We studied the sensitivity of stellar mass estimates to the codes/methods used, population synthesis models, star formation histories, nebular emission line contributions, photometric uncertainties, extinction and age. For each simulated galaxy, the difference between the input stellar masses and those estimated using different simulation catalogs, Δlog(M)\Delta\log(M), was calculated and used to identify the most fundamental parameters affecting stellar masses. We measured different components of the error budget, with the results listed as follows: (1). no significant bias was found among different codes/methods, with all having comparable scatter; (2). A source of error is found to be due to photometric uncertainties and low resolution in age and extinction grids; (3). The median of stellar masses among different methods provides a stable measure of the mass associated with any given galaxy; (4). The deviations in stellar mass strongly correlate with those in age, with a weaker correlation with extinction; (5). the scatter in the stellar masses due to free parameters are quantified, with the sensitivity of the stellar mass to both the population synthesis codes and inclusion of nebular emission lines studied.Comment: 33 pages, 20 Figures, Accepted for publication in Astrophysical Journa

    Automating Spacecraft Analysis: The Era of Ontological Modeling & Simulation

    Get PDF
    Verification by analysis is a predicted compliance of a design to imposed requirements. The levels of performance specified by performance requirements can be related to Technical Performance Measures (TPM) in a Model-Based Systems Engineering (MBSE) environment, but engineers performing verification by analysis are not commonly versed in professional Systems Engineering (SE) techniques or modeling languages such as SysML. As the formal application of Systems Engineering (SE) results in a diminution of time, effort, and money for large-scale projects, enabling technical engineers performing verification by analysis to contribute to MBSE improvements in the course of their daily work is financially incentivized. Ontologies applied to technical analysis methodologies are shown to improve the quality of verification by analysis activities while adhering to professional organization standards such as the International Council on Systems Engineering (INCOSE) SE Handbook and the National Aeronautics and Space Administration (NASA) standard 7009A: Standard for Models and Simulations

    Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID arrays

    Full text link
    Polarized thermal emission from interstellar dust grains can be used to map magnetic fields in star forming molecular clouds and the diffuse interstellar medium (ISM). The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) flew from Antarctica in 2010 and 2012 and produced degree-scale polarization maps of several nearby molecular clouds with arcminute resolution. The success of BLASTPol has motivated a next-generation instrument, BLAST-TNG, which will use more than 3000 linear polarization sensitive microwave kinetic inductance detectors (MKIDs) combined with a 2.5m diameter carbon fiber primary mirror to make diffraction-limited observations at 250, 350, and 500 μ\mum. With 16 times the mapping speed of BLASTPol, sub-arcminute resolution, and a longer flight time, BLAST-TNG will be able to examine nearby molecular clouds and the diffuse galactic dust polarization spectrum in unprecedented detail. The 250 μ\mum detector array has been integrated into the new cryogenic receiver, and is undergoing testing to establish the optical and polarization characteristics of the instrument. BLAST-TNG will demonstrate the effectiveness of kilo-pixel MKID arrays for applications in submillimeter astronomy. BLAST-TNG is scheduled to fly from Antarctica in December 2017 for 28 days and will be the first balloon-borne telescope to offer a quarter of the flight for "shared risk" observing by the community.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, June 29th, 201

    Unoccupied aerial systems temporal phenotyping and phenomic selection for maize breeding and genetics

    Get PDF
    Emerging tools in plant phenomics and high throughput field phenotyping are redefining possibilities for objective decision support in plant breeding and agronomy as well as discoveries in plant biology and the plant sciences. Unoccupied aerial systems (UAS, i.e. drones) have allowed inexpensive and rapid remote sensing for many genotypes throughout time in relevant field settings. UAS phenomics approaches have iterated rapidly, mimicking genomics progression over the last 30 years; the progression of UAS equipment parallels that of DNA-markers; while UAS analytics parallels progression from single marker linkage mapping to genomic selection. The TAMU maize breeding program first focused on using UAS to automate routine traits (plant height, plant population, etc.) comparing these to ground reference measurements. Finding success, we next focused on developing novel measurements impractical or impossible with manual collection such as plant growth and vegetation index curves. UAS plant growth curves measured in a genetic mapping populations has allowed discovery of temporal variation in quantitative trait loci (QTL). Now, phenomic selection approaches are being tested using temporal UAS, as first described using near infrared reflectance spectroscopy (NIRS) of grain. Phenomic selection is similar to genomic selection but uses a multitude of plant phenotypic measurements to identify relatedness and predict germplasm performance. Phenotypic measurements are thus treated as random markers with the underlying genetic or physiological cause remaining unknown. Using multiple extracted image features from multiple time points, genotype rankings have been successfully predicted for grain yield. Among the most exciting aspects have been identifying novel segregating physiological phenotypes important in prediction, which occur in growth stages earlier than previously evaluated. Similarly, UAS have allowed investigating plant responses to biotic and abiotic stress over time. UAS findings and approaches permit new fundamental plant biology and physiology research, which is catalyzing a new era in the plant sciences
    corecore