9 research outputs found

    Modeling Contamination Migration on the Chandra X-Ray Observatory - III

    Get PDF
    During its first 16 years of operation, the cold (about -60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. Keywords: X-ray astronomy, CCDs, contamination, modeling and simulation, spacecraft operation

    X-ray spectroscopy of massive stellar winds: previous and ongoing observations of the hot star ζ Pup

    Full text link
    The stellar winds of hot stars have an important impact on both stellar and galactic evolution, yet their structure and internal processes are not fully understood in detail. One of the best nearby laboratories for studying such massive stellar winds is the O4I(n)fp star ζ Pup. After briefly discussing existing X-ray observations from Chandra and XMM, we present a simulation of X-ray emission line profile measurements for the upcoming 840 kilosecond Chandra HETGS observation. This simulation indicates that the increased S/N of this new observation will allow several major steps forward in the understanding of massive stellar winds. By measuring X-ray emission line strengths and profiles, we should be able to differentiate between various stellar wind models and map the entire wind structure in temperature and density. This legacy X-ray spectrum of ζ Pup will be a useful benchmark for future X-ray missions

    Correlated X-ray and Optical Variability in the O-type Supergiant ζ Puppis

    No full text
    Analysis of the recent long exposure Chandra X-ray observation of the early-type O star ζ Pup shows clear variability with a period previously reported in optical photometric studies. These 813 ks of HETGS observations taken over a roughly one-year time span have two signals of periodic variability: (1) a high-significance period of 1.7820 ± 0.0008 day, and (2) a marginal detection of periodic behavior close to either 5 days or 6 days. A BRITE-Constellation nanosatellite optical photometric monitoring (using near-contemporaneous observations to the Chandra data) confirms a 1.78060 ± 0.00088 day period for this star. The optical period coincides with the new Chandra period within their error ranges, demonstrating a link between these two wave bands and providing a powerful lever for probing the photosphere-wind connection in this star. The phase lag of the X-ray maximum relative to the optical maximum is ∼ f = 0.45, but consideration of secondary maxima in both data sets indicates possibly two “hot” spots on the star with an X-ray phase lag of f = 0.1 each. The details of this periodic variation of the X-rays are probed by displaying a phased and trailed X-ray spectrum and by constructing phased light curves for wavelength bands within the HETGS spectral coverage (ranging down to bands encompassing groups of emission lines). We propose that the 1.78 day period is the stellar rotation period and explore how stellar bright spots and associated corotating interaction regions (CIRs) could explain the modulation of this star\u27s optical and X-ray output and their phase difference

    Functional Consequences of Toll-like Receptor 4 Polymorphisms

    Get PDF
    Toll-like receptor 4 (TLR4) is an important pathogen recognition receptor that recognizes mainly lipopolysaccharide (LPS) of Gram-negative bacteria, but also structures from fungal and mycobacterial pathogens, as well as endogenous ligands. Two nonsynonymous polymorphisms of TLR4, Asp299Gly and Thr399Ile, have been suggested to alter the function of the receptor. Some, but not all, studies have proposed that these polymorphisms lead to reduced cytokine response and increased susceptibility to Gram-negative infections. In this review, we compare studies that assessed the effect of the Asp299Gly and Thr399Ile polymorphisms on susceptibility to Gram-negative infections and examine the phenotypic consequences of these polymorphisms. In addition, we review the geographical distribution of TLR4 polymorphisms and present a model for evolutionary pressures on the TLR4 genetic make-up

    Control of exocytosis in adrenal chromaffin cells

    No full text

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    No full text
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data
    corecore