2,391 research outputs found

    Linear Wave Equations and Effective Lagrangians for Wigner Supermultiplets

    Get PDF
    The relevance of the contracted SU(4) group as a symmetry group of the pion nucleon scattering amplitudes in the large NcN_c limit of QCD raises the problem on the construction of effective Lagrangians for SU(4) supermultiplets. In the present study we suggest effective Lagrangians for selfconjugate representations of SU(4) in exploiting isomorphism between so(6) and ist universal covering su(4). The model can be viewed as an extension of the linear σ\sigma model with SO(6) symmetry in place of SO(4) and generalizes the concept of the linear wave equations for particles with arbitrary spin. We show that the vector representation of SU(4) reduces on the SO(4) level to a complexified quaternion. Its real part gives rise to the standard linear σ\sigma model with a hedgehog configuration for the pion field, whereas the imaginary part describes vector meson degrees of freedom via purely transversal ρ\rho mesons for which a helical field configuration is predicted. As a minimal model, baryonic states are suggested to appear as solitons of that quaternion.Comment: 16 pages, LaTe

    Fangtechnische Versuche im Starnberger See

    Get PDF

    Effect of Impurity Scattering on the Nonlinear Microwave Response in High-Tc Superconductors

    Get PDF
    We theoretically investigate intermodulation distortion in high-Tc superconductors. We study the effect of nonmagnetic impurities on the real and imaginary parts of nonlinear conductivity. The nonlinear conductivity is proportional to the inverse of temperature owing to the dependence of the damping effect on energy, which arises from the phase shift deviating from the unitary limit. It is shown that the final-states interaction makes the real part predominant over the imaginary part. These effects have not been included in previous theories based on the two-fluid model, enabling a consistent explanation for the experiments with the rf and dc fields

    A Correlation Between Circumstellar Disks and Rotation in the Upper Scorpius OB Association

    Full text link
    We present projected rotational velocities for 20 early-type (B8-A9) and 74 late-type (F2-M8) members of the ~5 Myr old Upper Scorpius OB Association derived from high dispersion optical spectra obtained with the High Resolution Echelle Spectrometer (HIRES) on Keck I and the Magellan Inamori Kyocera Echelle (MIKE) on the Magellan Clay telescope. The spectroscopic sample is composed of stars and brown dwarfs with infrared signatures of circumstellar disks, both primordial and debris, and non-excess sources of comparable spectral type. We merge projected rotational velocities, accretion diagnostics, and Spitzer Space Telescope Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) 24 micron photometry to examine the relationship between rotation and circumstellar disks. The rotational velocities are strongly correlated with spectral type, a proxy for mass, such that the median vsini for B8-A9 type stars is: 195(+/-)70 km/s, F2-K4: 37.8(+/-)7.4 km/s, K5-K9: 13.8(+21.3/-8.2) km/s, M0-M5: 16.52(+/-)5.3 km/s, and M5.5-M8: 17.72(+/-)8.1 km/s. We find with a probability of >0.99 that M-type stars and brown dwarfs having infrared excess suggestive of circumstellar disks rotate more slowly than their non-excess counterparts. A similar correlation is present among F2-K9 type stars, but only at the ~97% confidence level. Among the early-type (B8-A9) members, rotational velocities of the debris-disk and non-disk populations are indistinguishable. Considering the late-type (F2-M8) stars and brown dwarfs, we find a low fraction of slowly rotating, non-excess sources relative to younger star forming regions, suggesting that most have spun up following disk dissipation. The few late-type (F2-M5) debris disk sources, which may be representative of stars that have recently dispersed their inner disks, are evenly divided between slow and moderate rotators.Comment: 41 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Observation of Andreev bound states in YBaCuO/Au/Nb ramp-type Josephson junctions

    Get PDF
    We report on Josephson and quasiparticle tunneling in YBa2Cu3O7-x(YBCO)/Au/Nb ramp junctions of several geometries. Macroscopically, tunneling occurs in the ab-plane of YBCO either in the (100) and (010) direction, or in the (110) direction. These junctions have a stable and macroscopically well defined geometry. This allows systematic investigations of both quasiparticle and Josephson tunneling over a wide range of temperature and magnetic field. With Nb superconducting, its gap appears in the quasiparticle conductance spectra as Nb coherence peaks and a dip at the center of a broadened zero-bias conductance peak (ZBCP). As we increase the temperature or an applied magnetic field both the Nb coherence peaks and the dip get suppressed and the ZBCP fully develops, while states are conserved. With Nb in the normal state the ZBCP is observed up to about 77 K and is almost unaffected by an increasing field up to 7 T. The measurements are consistent with a convolution of density of states with broadened Andreev bound states formed at the YBCO/Au/Nb junction interfaces. Since junctions with different geometries are fabricated on the same substrate under the same conditions one expects to extract reliable tunneling information that is crystallographic direction sensitive. In high contrast to Josephson tunneling, however, the quasiparticle conductance spectra are crystallographic orientation insensitive: independent whether the tunneling occurs in the (100) or (110) directions, a pronounced ZBCP is always observed, consistent with microscopic roughness of the junction interfaces. Qualitatively, all these particularities regarding quasiparticle spectra hold regardless whether the YBCO thin film is twinned or untwinned.Comment: 13 pages, 10 figure

    Wind measurement system

    Get PDF
    A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed
    corecore