32 research outputs found

    Oligonucleotide-assisted cleavage and ligation: a novel directional DNA cloning technology to capture cDNAs. Application in the construction of a human immune antibody phage-display library

    Get PDF
    The use of oligonucleotide-assisted cleavage and ligation (ONCL), a novel approach to the capture of gene repertoires, in the construction of a phage-display immune antibody library is described. ONCL begins with rapid amplification of cDNA ends to amplify all members equally. A single, specific cut near 5′ and/or 3′ end of each gene fragment (in single stranded form) is facilitated by hybridization with an appropriate oligonucleotide adapter. Directional cloning of targeted DNA is accomplished by ligation of a partially duplex DNA molecule (containing suitable restriction sites) and amplification with primers in constant regions. To demonstrate utility and reliability of ONCL, a human antibody repertoire was cloned from IgG mRNA extracted from human B-lymphocytes engrafted in Trimera mice. These mice were transplanted with peripheral blood lymphocytes from Candida albicans infected individuals and subsequently immunized with C.albicans glyceraldehyde-3-phosphate dehydrogenase (GAPDH). DNA sequencing showed that ONCL resulted in efficient capture of gene repertoires. Indeed, full representation of all V(H) families/segments was observed showing that ONCL did not introduce cloning biases for or against any V(H) family. We validated the efficiency of ONCL by creating a functional Fab phage-display library with a size of 3.3 × 10(10) and by selecting five unique Fabs against GAPDH antigen

    Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization

    Get PDF
    Carpenter syndrome is an autosomal-recessive multiple-congenital-malformation disorder characterized by multisuture craniosynostosis and polysyndactyly of the hands and feet; many other clinical features occur, and the most frequent include obesity, umbilical hernia, cryptorchidism, and congenital heart disease. Mutations of RAB23, encoding a small GTPase that regulates vesicular transport, are present in the majority of cases. Here, we describe a disorder caused by mutations in multiple epidermal-growth-factor-like-domains 8 (MEGF8), which exhibits substantial clinical overlap with Carpenter syndrome but is frequently associated with abnormal left-right patterning. We describe five affected individuals with similar dysmorphic facies, and three of them had either complete situs inversus, dextrocardia, or transposition of the great arteries; similar cardiac abnormalities were previously identified in a mouse mutant for the orthologous Megf8. The mutant alleles comprise one nonsense, three missense, and two splice-site mutations; we demonstrate in zebrafish that, in contrast to the wild-type protein, the proteins containing all three missense alterations provide only weak rescue of an early gastrulation phenotype induced by Megf8 knockdown. We conclude that mutations in MEGF8 cause a Carpenter syndrome subtype frequently associated with defective left-right patterning, probably through perturbation of signaling by hedgehog and nodal family members. We did not observe any subject with biallelic loss-of function mutations, suggesting that some residual MEGF8 function might be necessary for survival and might influence the phenotypes observed

    Long-Term Effects of Pneumococcal Conjugate Vaccine on Nasopharyngeal Carriage of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis

    Get PDF
    BACKGROUND: Shifts in pneumococcal serotypes following introduction of 7-valent pneumococcal conjugate vaccine (PCV-7) may alter the presence of other bacterial pathogens co-inhabiting the same nasopharyngeal niche. METHODOLOGY/PRINCIPAL FINDINGS: Nasopharyngeal prevalence rates of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis were investigated before, 3 and 4.5 years after introduction of PCV-7 in the national immunisation program in children at 11 and 24 months of age, and parents of 24-month-old children (n≈330/group) using conventional culture methods. Despite a virtual disappearance of PCV-7 serotypes over time, similar overall pneumococcal rates were observed in all age groups, except for a significant reduction in the 11-month-old group (adjusted Odds Ratio after 4.5 years 0.48, 95% Confidence Interval 0.34-0.67). Before, 3 and 4.5 years after PCV-7 implementation, prevalence rates of S. aureus were 5%, 9% and 14% at 11 months of age (3.59, 1.90-6.79) and 20%, 32% and 34% in parents (1.96, 1.36-2.83), but remained similar at 24 months of age, respectively. Prevalence rates of H. influenzae were 46%, 65% and 65% at 11 months (2.22, 1.58-3.13), 52%, 73% and 76% at 24 months of age (2.68, 1.88-3.82) and 23%, 30% and 40% in parents (2.26, 1.58-3.33), respectively. No consistent changes in M. catarrhalis carriage rates were observed over time. CONCLUSIONS/SIGNIFICANCE: In addition to large shifts in pneumococcal serotypes, persistently higher nasopharyngeal prevalence rates of S. aureus and H. influenzae were observed among young children and their parents after PCV-7 implementation. These findings may have implications for disease incidence and antibiotic treatment in the post-PCV era

    Gender injustice in compensating injury to autonomy in English and Singaporean negligence law

    Get PDF
    The extent to which English law remedies injury to autonomy (ITA) as a stand-alone actionable damage in negligence is disputed. In this article I argue that the remedy available is not only partial and inconsistent (Keren-Paz in Med Law Rev, 2018) but also gendered and discriminatory against women. I first situate the argument within the broader feminist critique of tort law as failing to appropriately remedy gendered harms, and of law more broadly as undervaluing women’s interest in reproductive autonomy. I then show by reference to English remedies law’s first principles how imposed motherhood cases—Rees v Darlington and its predecessor McFarlane v Tayside Health Board—result in gender injustice when compared with other autonomy cases such as Chester v Afshar and Yearworth v North Bristol NHS Trust: A minor gender-neutral ITA is better remedied than the significant gendered harm of imposing motherhood on the claimant; men’s reproductive autonomy is protected to a greater extent than women’s; women’s reproductive autonomy is protected by an exceptional, derisory award. Worst of all, courts refuse to recognise imposed motherhood as detriment; and the deemed, mansplained, nonpecuniary joys of motherhood are used to offset pecuniary upkeep costs, forcing the claimant into a position she sought to avoid and thus further undermining her autonomy. The recent Singaporean case ACB v Thomson Medical Pte Ltd, awarding compensation for undermining the claimant’s genetic affinity in an IVF wrong-sperm-mix-up demonstrates some improvement in comparison to English law, and some shared gender injustices in the context of reproductive autonomy. ACB’s analysis is oblivious to the nature of reproductive autonomy harm as gendered; and prioritises the father’s interest in having genetic affinity with the baby over a woman’s interest in not having motherhood imposed upon her

    Integrating Deep Linguistic Features in Factuality Prediction over Unified Datasets

    No full text
    Previous models for the assessment of commitment towards a predicate in a sentence (also known as factuality prediction) were trained and tested against a specific annotated dataset, subsequently limiting the generality of their results. In this work we propose an intuitive method for mapping three previously annotated corpora onto a single factuality scale, thereby enabling models to be tested across these corpora. In addition, we design a novel model for factuality prediction by first extending a previous rule-based factuality prediction system and applying it over an abstraction of dependency trees, and then using the output of this system in a supervised classifier. Our model which we will make publicly available outperforms previous methods on all three datasets

    Plasticity first: molecular signatures of a complex morphological trait in filamentous cyanobacteria

    No full text
    Abstract Background Filamentous cyanobacteria that differentiate multiple cell types are considered the peak of prokaryotic complexity and their evolution has been studied in the context of multicellularity origins. Species that form true-branching filaments exemplify the most complex cyanobacteria. However, the mechanisms underlying the true-branching morphology remain poorly understood despite of several investigations that focused on the identification of novel genes or pathways. An alternative route for the evolution of novel traits is based on existing phenotypic plasticity. According to that scenario – termed genetic assimilation – the fixation of a novel phenotype precedes the fixation of the genotype. Results Here we show that the evolution of transcriptional regulatory elements constitutes a major mechanism for the evolution of new traits. We found that supplementation with sucrose reconstitutes the ancestral branchless phenotype of two true-branching Fischerella species and compared the transcription start sites (TSSs) between the two phenotypic states. Our analysis uncovers several orthologous TSSs whose transcription level is correlated with the true-branching phenotype. These TSSs are found in genes that encode components of the septosome and elongasome (e.g., fraC and mreB). Conclusions The concept of genetic assimilation supplies a tenable explanation for the evolution of novel traits but testing its feasibility is hindered by the inability to recreate and study the evolution of present-day traits. We present a novel approach to examine transcription data for the plasticity first route and provide evidence for its occurrence during the evolution of complex colony morphology in true-branching cyanobacteria. Our results reveal a route for evolution of the true-branching phenotype in cyanobacteria via modification of the transcription level of pre-existing genes. Our study supplies evidence for the ‘plasticity-first’ hypothesis and highlights the importance of transcriptional regulation in the evolution of novel traits

    Evolution of Chaperonin Gene Duplication in Stigonematalean Cyanobacteria (Subsection V)

    No full text
    Chaperonins promote protein folding and areknown to play a role in themaintenance of cellular stability under stress conditions. The group I bacterial chaperonin complex comprises GroEL, that forms a barrel-like oligomer, and GroES that forms the lid. In most eubacteria the GroES/GroEL chaperonin is encoded by a single-copy bicistronic operon, whereas in cyanobacteria up to three groES/groEL paralogs have been documented. Here we study the evolution and functional diversification of chaperonin paralogs in the heterocystous, multi-seriate filament forming cyanobacterium Chlorogloeopsis fritschii PCC 6912. The genome of C. fritschii encodes two groES/groEL operons (groESL1, groESL1.2) and amonocistronic groEL gene (groEL2). A phylogenetic reconstruction reveals that the groEL2 duplication is as ancient as cyanobacteria, whereas the groESL1.2 duplication occurred at the ancestor of heterocystous cyanobacteria. A comparison of the groEL paralogs transcription levels under different growth conditions shows that they have adapted distinct transcriptional regulation. Our results reveal that groEL1 and groEL1.2 are upregulated during diazotrophic conditions and the localization of their promoter activity points towards a role in heterocyst differentiation. Furthermore, protein-protein interaction assays suggest that paralogs encoded in the two operons assemble into hybrid complexes. The monocistronic encoded GroEL2 is not forming oligomers nor does it interact with the co-chaperonins. Interaction between GroES1.2 and GroEL1.2 could not be documented, suggesting that the groESL1.2 operon does not encode a functional chaperonin complex. Functional complementation experiments in Escherichia coli show that only GroES1/GroEL1 and GroES1/GroEL1.2 can substitute the native operon. In summary, the evolutionary consequences of chaperonin duplication in cyanobacteria include the retention of groESL1 as a housekeeping gene, subfunctionalization of groESL1.2 and neofunctionalization of the monocistronic groEL2 paralog.
    corecore