2,489 research outputs found

    The Initial Mass Function of the Orion Nebula Cluster across the H-burning limit

    Get PDF
    We present a new census of the Orion Nebula Cluster (ONC) over a large field of view (>30'x30'), significantly increasing the known population of stellar and substellar cluster members with precisely determined properties. We develop and exploit a technique to determine stellar effective temperatures from optical colors, nearly doubling the previously available number of objects with effective temperature determinations in this benchmark cluster. Our technique utilizes colors from deep photometry in the I-band and in two medium-band filters at lambda~753 and 770nm, which accurately measure the depth of a molecular feature present in the spectra of cool stars. From these colors we can derive effective temperatures with a precision corresponding to better than one-half spectral subtype, and importantly this precision is independent of the extinction to the individual stars. Also, because this technique utilizes only photometry redward of 750nm, the results are only mildly sensitive to optical veiling produced by accretion. Completing our census with previously available data, we place some 1750 sources in the Hertzsprung-Russel diagram and assign masses and ages down to 0.02 solar masses. At faint luminosities, we detect a large population of background sources which is easily separated in our photometry from the bona fide cluster members. The resulting initial mass function of the cluster has good completeness well into the substellar mass range, and we find that it declines steeply with decreasing mass. This suggests a deficiency of newly formed brown dwarfs in the cluster compared to the Galactic disk population.Comment: 16 pages, 18 figures. Accepted for publication in The Astrophysical Journa

    HST measures of Mass Accretion Rates in the Orion Nebula Cluster

    Get PDF
    The present observational understanding of the evolution of the mass accretion rates (Macc) in pre-main sequence stars is limited by the lack of accurate measurements of Macc over homogeneous and large statistical samples of young stars. Such observational effort is needed to properly constrain the theory of star formation and disk evolution. Based on HST/WFPC2 observations, we present a study of Macc for a sample of \sim 700 sources in the Orion Nebula Cluster, ranging from the Hydrogen-burning limit to M\ast \sim 2M\odot. We derive Macc from both the U-band excess and the H{\alpha} luminosity (LH{\alpha}), after determining empirically both the shape of the typical accretion spectrum across the Balmer jump and the relation between the accretion luminosity (Lacc) and LH{\alpha}, that is Lacc/L\odot = (1.31\pm0.03)\cdotLH{\alpha}/L\odot + (2.63\pm 0.13). Given our large statistical sample, we are able to accurately investigate relations between Macc and the parameters of the central star such as mass and age. We clearly find Macc to increase with stellar mass, and decrease over evolutionary time, but we also find strong evidence that the decay of Macc with stellar age occurs over longer timescales for more massive PMS stars. Our best fit relation between these parameters is given by: log(Macc/M\odot\cdotyr)=(-5.12 \pm 0.86) -(0.46 \pm 0.13) \cdot log(t/yr) -(5.75 \pm 1.47)\cdot log(M\ast/M\odot) + (1.17 \pm 0.23)\cdot log(t/yr) \cdot log(M\ast/M\odot). These results also suggest that the similarity solution model could be revised for sources with M\ast > 0.5M\odot. Finally, we do not find a clear trend indicating environmental effects on the accretion properties of the sources.Comment: 17 pages, 15 figures, accepted for publication in Ap

    A New Method for the Assessment of Age and Age-Spread of Pre-Main Sequence Stars in Young Stellar Associations of the Magellanic Clouds

    Full text link
    We present a new method for the evaluation of the age and age-spread among pre-main-sequence (PMS) stars in star-forming regions in the Magellanic Clouds, accounting simultaneously for photometric errors, unresolved binarity, differential extinction, stellar variability, accretion and crowding. The application of the method is performed with the statistical construction of synthetic color-magnitude diagrams using PMS evolutionary models. We convert each isochrone into 2D probability distributions of artificial PMS stars in the CMD by applying the aforementioned biases that dislocate these stars from their original CMD positions. A maximum-likelihood technique is then applied to derive the probability for each observed star to have a certain age, as well as the best age for the entire cluster. We apply our method to the photometric catalog of ~2000 PMS stars in the young association LH 95 in the LMC, based on the deepest HST/ACS imaging ever performed toward this galaxy, with a detection limit of V~28, corresponding to M~0.2 Msun. Our treatment shows that the age determination is very sensitive to the considered grid of evolutionary models and the assumed binary fraction. The age of LH 95 is found to vary from 2.8 Myr to 4.4 Myr, depending on these factors. Our analysis allows us to disentangle a real age-spread from the apparent CMD-broadening caused by the physical and observational biases. We find that LH 95 hosts an age-spread well represented by a gaussian distribution with a FWHM of the order of 2.8 Myr to 4.2 Myr depending on the model and binary fraction. We detect a dependence of the average age of the system with stellar mass. This dependence does not appear to have any physical meaning, being rather due to imperfections of the PMS evolutionary models, which tend to predict lower ages for the intermediate masses, and higher ages for low-mass stars.Comment: 19 pages, 16 figures, accepted for publication by the Astrophysical Journa

    Quantitative Evidence for an Intrinsic Age Spread in the Orion Nebula Cluster

    Full text link
    Aims. We present a study of the distribution of stellar ages in the Orion Nebula Cluster (ONC) based on accurate HST photometry taken from the HST Treasury Program observations of the ONC utilizing the most recent estimate of the cluster's distance (Menten et al. 2007). We investigate the presence of an intrinsic age spread in the region and a possible trend of age with the spatial distribution. Methods. We estimate the extinction and accretion luminosity towards each source by performing synthetic photometry on an empirical calibration of atmospheric models (Da Rio et al. 2010) using the package Chorizos (Maiz-Apellaniz 2004). The position of the sources in the HR-diagram is compared with different theoretical isochrones to estimate the mean cluster age and age dispersion. Through Monte Carlo simulations we quantify the amount of intrinsic age spread in the region, taking into account uncertainties on the distance, spectral type, extinction, unresolved binaries, accretion and photometric variability. Results. According to Siess et al. (2000) evolutionary models the mean age of the Cluster is 2.2 Myr with a scatter of few Myrs. With Monte Carlo simulations we find that the observed age spread is inconsistent with a coeval stellar population, but is in agreement with a star formation activity between 1.5 and 3.5 Myrs. We also observe light evidence for a trend of ages with spatial distribution.Comment: 12 pages, 12 figures, Accepted for publication in Astronomy and Astrophysic

    Common methods of valuation in Brazil

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/96896/1/MBA_Ferreira_Rogerio_Fall_1998final.pd

    IN-SYNC. VIII. Primordial Disk Frequencies in NGC 1333, IC 348, and the Orion A Molecular Cloud

    Get PDF
    In this paper, we address two issues related to primordial disk evolution in three clusters (NGC 1333, IC 348, and Orion A) observed by the INfrared Spectra of Young Nebulous Clusters (IN-SYNC) project. First, in each cluster, averaged over the spread of age, we investigate how disk lifetime is dependent on stellar mass. The general relation in IC 348 and Orion A is that primordial disks around intermediate mass stars (2--5MM_{\odot}) evolve faster than those around loss mass stars (0.1--1MM_{\odot}), which is consistent with previous results. However, considering only low mass stars, we do not find a significant dependence of disk frequency on stellar mass. These results can help to better constrain theories on gas giant planet formation timescales. Secondly, in the Orion A molecular cloud, in the mass range of 0.35--0.7MM_{\odot}, we provide the most robust evidence to date for disk evolution within a single cluster exhibiting modest age spread. By using surface gravity as an age indicator and employing 4.5 μm\mu m excess as a primordial disk diagnostic, we observe a trend of decreasing disk frequency for older stars. The detection of intra-cluster disk evolution in NGC 1333 and IC 348 is tentative, since the slight decrease of disk frequency for older stars is a less than 1-σ\sigma effect.Comment: 25 pages, 26 figures; submitted for publication (ApJ

    O "menu químico" das plantas: uma abordagem ao ensino da química no ensino secundário

    Get PDF
    O papel da interdisciplinaridade na sedimentação de conceitos básicos e estruturantes para o desenvolvimento da aprendizagem em química pode ser implementado através de pequenos projetos que implicam a realização de procedimentos laboratoriais repetitivos conducentes ao desenvolvimento da memória de longo prazo, bem como criativos e de interligação de conceitos. O projeto aqui apresentado é uma proposta de trabalho para implementação nas escolas de ensino secundário, em atividades paralelas à sala de aula. Tendo como objeto de estudo os sistemas biológicos, é proposta a monitorização de diversos parâmetros químicos, necessários ao desenvolvimento de espécies hortícolas selecionadas, com o objetivo de dinamizar a aprendizagem de um conjunto significativo de conceitos químicos incorporados nos programas curriculares dos 10.º, 11.º e 12.º anos do ensino secundário.info:eu-repo/semantics/publishedVersio

    The Core Mass Function in the Massive Protocluster G286.21+0.17 revealed by ALMA

    Full text link
    We study the core mass function (CMF) of the massive protocluster G286.21+0.17 with the Atacama Large Millimeter/submillimeter Array via 1.3~mm continuum emission at a resolution of 1.0\arcsec\ (2500~au). We have mapped a field of 5.3\arcmin×\times5.3\arcmin\ centered on the protocluster clump. We measure the CMF in the central region, exploring various core detection algorithms, which give source numbers ranging from 60 to 125, depending on parameter selection. We estimate completeness corrections due to imperfect flux recovery and core identification via artificial core insertion experiments. For masses M1MM\gtrsim1\:M_\odot, the fiducial dendrogram-identified CMF can be fit with a power law of the form dN/dlogMMα{\rm{d}}N/{\rm{d}}{\rm{log}}M\propto{M}^{-\alpha} with α1.24±0.17\alpha \simeq1.24\pm0.17, slightly shallower than, but still consistent with, the index of the Salpeter stellar initial mass function of 1.35. Clumpfind-identified CMFs are significantly shallower with α0.64±0.13\alpha\simeq0.64\pm0.13. While raw CMFs show a peak near 1M1\:M_\odot, completeness-corrected CMFs are consistent with a single power law extending down to 0.5M\sim 0.5\:M_\odot, with only a tentative indication of a shallowing of the slope around 1M\sim1\:M_\odot. We discuss the implications of these results for star and star cluster formation theories.Comment: 11 pages, accepted by Ap
    corecore